Skip to main content

The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems

  • Chapter
Saline Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 162))

Abstract

Examination of the microbial diversity in hypersaline lakes of increasing salt concentrations shows that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis from hydrogen and carbon dioxide or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. The observations can be explained on the basis of the energetic cost of haloadaptation used by the different metabolic groups and the free-energy change associated with the dissimilatory reactions. All halophilic microorganisms spend large amounts of energy to maintain steep gradients of Na+ and K+ concentrations across their cytoplasmic membrane. Most Bacteria and also the methanogenic Archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. The halophilic aerobic Archaea (order Halobacteriales) and the halophilic fermentative Bacteria (order Halanaerobiales) use KCl as the main intracellular solute. This strategy, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic compatible solutes. By combining information on the amount of energy available to each physiological group and the strategy used to cope with salt stress, a coherent model emerges that provides explanations for the upper salinity limit at which the different microbial conversions occur in hypersaline lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Amotz, A., and M. Avron, 1973. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51: 875–878.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, K. K., and K. Ingvorsen, 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst. appl. Microbiol. 20: 366–373.

    Google Scholar 

  • Brown, A. D., 1990. Microbial water stress physiology. Principles and Perspectives. John Wiley, and Sons, Ltd., Chichester, 313 pp.

    Google Scholar 

  • Brown, F. F., I. Sussman, M. Avron, and H. Degani, 1982. NMR studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella. Biochim. biophys. Acta 690: 165–173.

    Google Scholar 

  • Caumette, P., Y. Cohen, and R. Matheron, 1990. Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. appl. Microbiol. 14: 33–38.

    Google Scholar 

  • Conrad, R., P. Frenzel, and Y. Cohen, 1995. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol. Ecol. 16: 297–305.

    Google Scholar 

  • Dennis, P. P., and L. C. Shimmin, 1997. Evolutionary divergence and salinity-mediated selection in halophilic Archaea. Microbiol. mol. Biol. Rev. 61: 90–104.

    Google Scholar 

  • Galinski, E. A., 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49: 487–496.

    Article  CAS  Google Scholar 

  • Galinski, E. A., 1995. Osmoadaptation in bacteria. Adv. microb. Physiol. 37: 273–328.

    Google Scholar 

  • Giani, D., L. Giani, Y. Cohen, and W. E. Krumbein, 1984. Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiol. Lett. 25: 219–224.

    Google Scholar 

  • Gimmler, H., and W. Hartung, 1988. Low permeability of the plasma membrane of Dunaliella parva for solutes. J. Plant Physiol. 133: 165–172.

    Article  Google Scholar 

  • Hartmann, R., H.-D. Sickinger, and D. Oesterhelt, 1980. Anaerobic growth of halobacteria. Proc. natn. Acad. Sci. U.S.A. 77: 3821–3825.

    Google Scholar 

  • Imhoff, J. F., H. G. Sahl, G. S. H. Soliman, and H. G. Trüper, 1979. The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol. J. 1: 219–234.

    Google Scholar 

  • Jorgensen, B. B., and Y. Cohen, 1977. Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–666.

    Google Scholar 

  • Joye, S.B., T.L. Connell, L.G. Miller, R.S. Oremland, and R.S. Jellison, 1999. Oxidation of ammonia and methane in an alkaline, saline lake. Limnol. Oceanogr. 44: 178–188.

    Google Scholar 

  • Khmelenina, V. N., N. G. Starostina, M. G. Tsvetkova, A. P. Sokolov, N. E. Suzina, and Y. A. Trotsenko, 1996. Methanotrophic bacteria in saline reservoirs of Ukraina and Tuva. Mikrobiologiya 65: 696–703 (in Russian).

    CAS  Google Scholar 

  • Khmelenina, V. N., M. G. Kalyuzhneya, N. G. Starostina, N. E. Suzina, and Y. A. Trotsenko, 1997. Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr. Microbiol. 35: 257–261.

    Google Scholar 

  • Khmelenina, V. N., M. G. Kalyuzhneya, V. G. Sakharovsky, N. E. Suzina, Y. A. Trotsenko, and G. Gottschalk, 1999. Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch. Microbiol. 172: 321–329.

    Google Scholar 

  • Koops, H.-P., B. Böttcher, U. Möller, A. Pommerening-Röser, and G. Stehr, 1990. Description of a new species of Nitrosococcus. Arch. Microbiol. 154: 244–248.

    Google Scholar 

  • Krekeler, D. P., P. Sigalevich, A. Teske, H. Cypionka, and Y. Cohen, 1997. A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol. 167: 369–375.

    Google Scholar 

  • Kushner, D. J., 1985. The Halobacteriaceae. In Woese, C. R., and Wolfe, R. S. (ed.), The Bacteria. A Treatise on Structure and Function. Vol. VIII. Archaebacteria. Academic Press, Orlando FL.: 171–214.

    Google Scholar 

  • Lai, M.-C., and R. P. Gunsalus, 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bact. 174: 7474–7477.

    PubMed  CAS  Google Scholar 

  • Lai, M.-C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus, 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bact. 173: 5352–5358.

    PubMed  CAS  Google Scholar 

  • Lanyi, J. K., 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bact. Rev. 38: 272–290.

    Google Scholar 

  • Lanyi, J. K., and M. P. Silverman, 1979. Gating effects in Halo-bacterium halobium membrane transport. J. biol. Chem. 254: 4750–4755.

    Google Scholar 

  • Mackay, M. A., R. S. Norton, and L. J. Borowitzka, 1984. Organic osmoregulatory solutes in cyanobacteria. J. gen. Microbiol. 130: 2177–2191.

    Google Scholar 

  • Mancinelli, R. L., and L. I. Hochstein, 1986. The occurrence of de-nitrification in extremely halophilic bacteria. FEMS Microbiol. Lett. 35: 55–58.

    Google Scholar 

  • Marvin DiPasquale, M., A. Oren, Y. Cohen, and R. S. Oremland, 1999. Radiotracer studies of bacterial methanogenesis in sediments from the Dead Sea and Solar Lake (Sinai). In Oren, A. (ed.), Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton (FL.): 149–160.

    Google Scholar 

  • Mermelstein, L. D., and J. G. Zeikus, 1998. Anaerobic nonmethanogenic extremophiles. In Horikoshi, K., and W. D. Grant (eds), Extremophiles. Microbial Life in Extreme Environments. Wiley-Liss, New York: 255–284.

    Google Scholar 

  • Nissenbaum, A., and I. R. Kaplan, 1976. Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea. In Nriagu, J. O. (ed.), Environmental Biogeochemistry. Vol. 1. Ann Arbor Science Publishers, Ann Arbor: 309–325.

    Google Scholar 

  • Ollivier, B.. C. E. Hatchikian, G. Prensier, J. Guezennec, and J.-L. Garcia, 1991. Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. syst. Baet. 41: 74–81.

    Google Scholar 

  • Ollivier, B., P. Caumette, J.-L. Garcia, and R. A. Mah, 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.

    Google Scholar 

  • Ollivier, B., M.-L. Fardeau, J.-L. Cayol, M. Magot, B. K. C. Patel, G. Prensier, and J.-L. Garcia, 1998. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. syst. Bact. 48: 821–828.

    Google Scholar 

  • Oremland, R. S., and G. M. King, 1989. Methanogenesis in hypersaline environments. In Cohen, Y., and E. Rosenberg (eds), Microbial Mats. Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington: 180–190.

    Google Scholar 

  • Oren, A., 1983. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136: 42–48.

    Google Scholar 

  • Oren, A., 1986. Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can. J. Microbiol. 32: 4–9

    Google Scholar 

  • Oren, A., 1988. Anaerobic degradation of organic compounds at high salt concentrations. Antonie van Leeuwenhoek 54: 267277.

    Google Scholar 

  • Oren, A., 1990. Anaerobic degradation of organic compounds in hypersaline environments: possibilities and limitations. In Wise, D. L. (ed.), Bioprocessing and Biotreatment of Coal. Marcel Dekker, New York: 155–175.

    Google Scholar 

  • Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiol. mol. Biol. Rev. 63: 334–348.

    Google Scholar 

  • Oren, A., 2000. The order Haloanaerobiales. In Dworkin, M., Falkow, S., Rosenberg, E.. Schleifer, K.-H., and Stackebrandt, E. (eds), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 3rd edn. Springer-Verlag, New York: in press.

    Google Scholar 

  • Oren, A., W. G. Weisburg, M. Kessel, and C. R. Woese, 1984. Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst. appl. Microbiol. 5: 58–70.

    Google Scholar 

  • Oren, A., H. Pohla, and E. Stackebrandt, 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov. Syst. appl. Microbiol. 9: 239–246.

    Google Scholar 

  • Oren, A., M. Kühl, and U. Karsten, 1995. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151–159.

    Google Scholar 

  • Oren, A., M. Heldal, and S. Norland, 1997. X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can. J. Microbiol. 43: 588–592.

    Google Scholar 

  • Post, F. J., and J. C. Stube, 1988. A microcosm study of nitrogen utilization in the Great Salt Lake, Utah. Hydrobiologia 158: 89–100.

    Google Scholar 

  • Rainey. F. A., T. N. Zhilina, E. S. Boulygina, E. Stackebrandt, T. P. Tourova, and G. A. Zavarzin, 1995. The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1: 185–199.

    Article  Google Scholar 

  • Reed, R. H., J. A. Chudek, R. Foster, and W. D. P. Stewart, 1984. Osmotic adjustment in cyanobacteria from hypersaline environments. Arch. Microbiol. 138: 333–337.

    Google Scholar 

  • Rengpipat, S., S. E. Lowe, and J. G. Zeikus, 1988. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J. Bact. 170: 3065–3071.

    PubMed  CAS  Google Scholar 

  • Rubentschik, L., 1929. Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralbl. Bakteriol. Il Abt. 77: 1–18.

    Google Scholar 

  • Schink, B., 1999. Habitats of Prokaryotes. In Lengeler, J. W., G. Drews, and H. G. Schlegel (eds), Biology of the Prokarotes. Thieme, Stuttgart: 763–803.

    Google Scholar 

  • Slobodkin, A. I., and G. A. Zavarzin, 1992. Methane production in halophilic cyanobacterial mats in lagoons of Sivash Lake. Mikrobiologiya 61: 294–298 (in Russian; English translation pp. 198–201 ).

    Google Scholar 

  • Sokolov, A. R., and Y. A. Trotsenko, 1995. Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol. Ecol. 18: 299–304.

    Google Scholar 

  • Switzer Blum, J., J. F. Stolz, A. Oren,, and R. S. Oremland. 2001. Selenihalanaerobacter shriftii gen. nov.. sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch. Microbiol. 175: 208–219.

    Google Scholar 

  • van de Vosseberg, J. L. C. M., T. Ubbink-Kok, M. H. L. Elferink, A. J. M. Driessen, and W. N. Konings, 1995. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18: 925–932.

    Google Scholar 

  • Ventosa, A., J. J. Nieto, and A. Oren, 1998. Biology of moderately aerobic bacteria. Microbiol. mol. Biol. Rev. 62: 504–544.

    Google Scholar 

  • Ward, B. B., D. P. Martinko, M. C. Diaz, and S. B. Joye, 2000. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl. environ. Microbiol. 66: 2873–2881.

    Google Scholar 

  • Welsh. D. T., Y. E. Lindsay, P. Caumette, R. A. Herbert, and J. Hannan, 1996. Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium Desulfovibrio halophilus. FEMS Microbiol. Lett. 140: 203–207.

    Google Scholar 

  • Wood, A. R, and D. P. Kelly, 1991. Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch. Microbiol. 156: 277–280.

    Google Scholar 

  • Zavarzin, G. A., T. N. Zhilina, and M. A. Pusheva, 1994. Halophilic acetogenic bacteria. In Drake, H. L. (ed.), Acetogenesis. Chapman, and Hall, New York: 432–444.

    Chapter  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin, 1987. Methanohalobium evestigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dokl. Akad. Nauk. S.S.S.R. 293: 464–468 (in Russian).

    Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin, 1990. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87: 315–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oren, A. (2001). The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. In: Melack, J.M., Jellison, R., Herbst, D.B. (eds) Saline Lakes. Developments in Hydrobiology, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2934-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2934-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5995-6

  • Online ISBN: 978-94-017-2934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics