Skip to main content

Performance of Conifer Stock Produced Through Somatic Embryogenesis

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 55))

Abstract

The use of tree improvement practices to enhance the genetic characteristics of plants is a forestry practice that consistently shows a high return on investment by increasing yields obtained from plantation forestry operations. Improved seed is an effective way of bringing genetic improvement to forest regeneration programs. Seed orchards are currently used to produce seeds in large commercial quantities from trees having desired genetic traits. However, seed does not provide a method to multiply specific individuals that have desirable traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G.W., Doiron, M.G., Park, Y.S., Bonga, J.M. and Charest, P.J. 1994. Commercialization potential of somatic embryogenesis in black spruce tree improvement. For. Chron. 70: 593–598.

    Google Scholar 

  • Becwar, M.R. and Pullman, G.S. 1995. Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Somatic embryogenesis in Woody Plants, Vol. 3. Jain, S., Gupta, P. and Newton, R. (Eds.), Kluwer Academic Publishers, Dordrecht the Netherlands, pp. 287–301.

    Chapter  Google Scholar 

  • Bernier, P.Y. 1993. Comparing natural and planted black spruce seedlings. Can. J. For. Res. 23: 2427–2434.

    Google Scholar 

  • Bigot, C. and Engelmann, F. 1987. Vegetative propagation in-vitro of Cunninghamia lanceolata (Lamb.) Hook. In: Cell and Tissue Culture in Forestry. Vol. 3. Bonga, J.M., Durzan, D.J., (Eds.), Martinus Nijhoff/Dr W. Junk Publishers. The Hague/Boston/Lancaster, pp. 114–127.

    Chapter  Google Scholar 

  • Burdett, A.N. 1987. Understanding root growth capacity: Theoretical considerations in assessing planting stock quality by means of root growth tests. Can. J. For. Res. 17: 768–775.

    Google Scholar 

  • Burdett, A.N. 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can. J. For. Res. 20: 415–427.

    Google Scholar 

  • Burdett, A.N., and Simpson, D.G. 1984. Lifting, grading, packaging, and storing. In: Forest Nursery Manual: Production of Bareroot Seedlings. M.L. Duryea and T.D. Landis (Eds.), Martinus Nijhoff/Dr W. Junk Publishers. The Hague/Boston/Lancaster, pp. 227–234.

    Chapter  Google Scholar 

  • Burr, K.E. 1990. The target seedling concept: bud dormancy and cold-hardiness. In: Target Seedling Symposium: Proceedings of the Western Forest Nursery Associations. R. Rose, S.J. Campbell, and T.D. Landis (Eds.), USDA For. Serv. Gen. Tech. Rep. RM-200, pp. 79–90.

    Google Scholar 

  • Cheliak W.M., and Rogers D.L. 1990. Integrating biotechnology into tree improvement programs. Can. J. For. Res. 20: 452–463.

    Article  Google Scholar 

  • Chuanhan, L., and Ritchie, G.A. 1998. Eight hundred years of clonal forestry in China: I. Traditional afforestation with Chinese fir (Cunninghamia lanceolata ( Lamb.) Hook.) in China. New For. (under review )

    Google Scholar 

  • Cyr, D.R., Lazaroff, W.R., Grimes, S.M.A., Quan, Q.Q., Bethune, T.D., Dunstan, D.I., and Roberts, D.R. 1994. Cryopreservation of interior spruce (Picea glauca x engelmanni complex) embryogenic cultures. Plant Cell Rep. 13: 574–577.

    Article  Google Scholar 

  • Davis, T.D., Hassig, B.E., and Sankhia, B.E. (Editors) [Dudley T.R. Gen. Ed.]. 1988. Advances in Plant Sciences Series. Volume 2. Adventitious Root Formation in Cuttings. Dioscorides Press, Portland, OR.

    Google Scholar 

  • Díaz-Pérez, J.C., Sutter, E.G., and Shackel, K.A. 1995a. Relative water content and water potential of tissue-cultured apple shoots under water deficits. J. Exp. Bot. 46: 111–118.

    Article  Google Scholar 

  • Díaz-Pérez, J.C., Sutter, E.G., and Shackel, K.A. 1995b. Acclimatization and subsequent gas exchange, water relations, survival and growth of microcultured apple plantlets after transplanting them in soil. Physiol. Plant. 95: 225–232.

    Article  Google Scholar 

  • Díaz-Pérez, J.C., Shackel, K.A., and Sutter, E.G. 1995c. Effects of in vitro-formed roots and acclimatization on water status and gas exchange of tissue cultured apple shoots. J. Am. Soc. Hortic. Sci. 120: 435–440.

    Google Scholar 

  • Drew, A.P., Kavanagh, K.L., and Maynard, C.A. 1992. Acclimatizing microprpoagated black cherry by comparison with half-sib seedlings. Physiol. Plant. 86: 459–464.

    Article  Google Scholar 

  • Folk, R.S., and Grossnickle, S.C. 1997. Determining field performance potential with the use of limiting environmental conditions. New For. 13: 121–138.

    Article  Google Scholar 

  • Folk, R.S., Grossnickle S.C., and Russell, J.H. 1995. Gas exchange, water relations and morphology of yellow-cedar seedlings and stecklings before planting and during field establishment. New For. 9: 1–20.

    Article  Google Scholar 

  • Frampton, L.J., and Amerson, H.V. 1989. Influence of tissue culture method on field growth of loblolly pine. In Vitro Cell. Dev. Biol. 25(3) Part II: 13A.

    Google Scholar 

  • Frampton, L.J., and Foster, G.S. 1993. Field testing vegetative propagules. In: Clonal Forestry: I. Genetic and Biotechnology. Ahuja, M.R. and Libby, A.J. (Eds.), Springer-Verlag, NY. pp. 110–134.

    Chapter  Google Scholar 

  • Fuchigami, L.H., Weiser, C.J., Kobayashi, K., Timmis, R., and Gusta, L.V. 1982. A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In: Plant Cold Hardiness and Freezing Stress. P.H. Li, A. Sakai (Eds.), Academic Press, NY. pp. 93–116.

    Google Scholar 

  • Gleed, J.A. 1993. Development of plantlings and stecklings of radiata pine. In: Clonal Forestry: II. Conservation and Application. Ahuja, M.R. and Libby, A.J. (Eds.), Springer-Verlag, NY. pp. 147–157.

    Google Scholar 

  • Gleed, J.A. 1994. Commercial production of tissue culture Pinus radiata. Biological Sciences Symposium, TAPPI Press, Atlanta, pp. 15–17.

    Google Scholar 

  • Gleed, J.A. 1995. Incorporating biotechnology into a forest program (A New Zealand example). The Leslie L. Schaffer Lectureship in Forest Sciences, Dept. of Forestry, Univ. of British Columbia, 12 p.

    Google Scholar 

  • Greenwood, M.S. 1995. Juvenility and maturation: current concepts. Tree Physiol. 15: 433–438.

    Article  PubMed  Google Scholar 

  • Grossnickle, S.C. 1988. Planting stress in newly planted jack pine and white spruce. 1. Factors influencing water uptake. Tree Physiol. 4: 71–83.

    Google Scholar 

  • Grossnickle, S.C., and Blake, T.J. 1987. Water relations and morphological development of bare-root jack pine and white spruce seedlings: seedling establishment on a boreal cut-over site. For. Ecol. Manage. 18: 299–318.

    Article  Google Scholar 

  • Grossnickle, S.C., and Folk, R.S. 1993. Stock quality assessment: forecasting survival or performance on a reforestation site. Tree Planters ’ Notes, 44: 113–121.

    Google Scholar 

  • Grossnickle, S.C., and Heikurinen J. 1989. Site preparation: water relations and growth of outplanted jack pine and white spruce. New For. 3: 99–123.

    Article  Google Scholar 

  • Grossnickle, S.C., and Major, J.E. 1994a. Interior spruce seedlings compared to emblings produced from somatic embryogenesis. II) Stock quality assessment prior to field planting. Can. J. For. Res. 24: 1385–1396.

    Article  Google Scholar 

  • Grossnickle, S.C., and Major, J.E. 1994b. Interior spruce seedlings compared to emblings produced from somatic embryogenesis. III) Physiological response and morphological development on a reforestation site. Can. J. For. Res. 24: 1397–1407.

    Article  Google Scholar 

  • Grossnickle, S.C., and Reid, C.P.P. 1984. Water relations of Engelmann spruce seedlings on a high-elevation mine site: An example of how reclamation techniques can alter microclimate and edaphic conditions. Reclam. Reveg. Res. 3: 199–221.

    Google Scholar 

  • Grossnickle, S.C., and J.H. Russell. 1990. Water movement characterization of yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) seedlings and rooted cuttings. Tree Physiol. 6: 57–68.

    Article  PubMed  Google Scholar 

  • Grossnickle, S.C., Major, J.E., and Folk, R.S. 1994. Interior spruce seedlings compared to emblings produced from somatic embryogenesis. I) Nursery development, fall acclimation and over-winter storage. Can. J. For. Res. 24: 1376–1384.

    Article  Google Scholar 

  • Grossnickle, S.C., Cyr, D., and Polonenko, D.R. 1996. Somatic embryogenesis tissue culture for the propagation of conifer seedlings: A technology comes of age. Tree Planters’ Notes, 47: 48–57.

    Google Scholar 

  • Grossnickle, S.C., Major, J.E., Arnott, J.T., and Lemay, V.M. 1991. Stock quality assessment through an integrated approach. New For. 5: 77–91

    Article  Google Scholar 

  • Gupta, P.K., and Grob J. A. 1995. Somatic embryogenesis in conifers. In: Somatic Embryogenesis in Woody Plants. Jain S M, Gupta P.K., Newton R.J. (Eds.), Kluwer Academic Publishers, Dordrecht the Netherlands, pp. 81–98.

    Google Scholar 

  • Gupta, P.K., Timmis, R., and Mascarenhas, A.F. 1991. Field performance of micropropagated forestry species. In Vitro Cell. Dev. Biol. 27: 159–164.

    Google Scholar 

  • Gupta, P.K., Pullman, G., Timmis, R., Kreitinger, M. Carlson, W.C., Grob, J., and Welty, E. 1993. Forestry in the 21st century: The biotechnology of somatic embryogenesis. Bio/Technology, 11: 454–459.

    Google Scholar 

  • Hackett, W.P. 1985. Juvenility, maturation and rejuvination in woody plants. Hortic. Rev. 7: 109–155.

    Google Scholar 

  • Hackett, W.P. 1988. Donor plant maturation and adventitious root formation. In: Advances in Plant Sciences Series. Volume 2. Adventitious Root Formation in Cuttings. Davis, T.D., Hassig, B.E. and Sankhia, B.E. (Eds.) [Dudley T.R. Gen. Ed.]. Dioscorides Press, Portland, OR. pp. 11–28.

    Google Scholar 

  • Hasnain, S., Pigeon, R., and Overend, R.P. 1986. Economic analysis of the use of tissue culture for rapid forest improvement. For. Chron. 9: 240–246.

    Google Scholar 

  • Isabel, N. and Tremblay, F.M. 1995. Somatic embryogenesis in red spruce (Picea rubens Sarg.). In: Somatic embryogenesis in Woody Plants, Vol. 3. Jain, S., Gupta, P. and Newton, R. (Eds.), Kluwer Academic Publishers, Dordrecht the Netherlands, pp. 111–123.

    Chapter  Google Scholar 

  • Karlsson, I., and Russell, J.H. 1990. Comparison of yellow cypress trees of seedlings and rooted cutting origins after 9 and 11 years in the field. Can. J. For. Res. 20: 37–42.

    Article  Google Scholar 

  • Kartha, K.K., Fowke, L.C., Leung, N.L., Caswell, K.L., and Hakman, I. 1988. Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J. Plant Physiol. 132: 529–539.

    Article  CAS  Google Scholar 

  • Kleinschmit, J., Khurana, D.K., Gerhold, H.D., and Libby, W.J. 1993. Past, present and anticipated applications of clonal forestry. In: Clonai Forestry: II. Conservation and Application. Ahuja, M.R. and Libby, A.J. (Eds.), Springer-Verlag, NY. pp. 9–41.

    Chapter  Google Scholar 

  • Klimaszewska, K. 1995. Somatic embryogenesis in Picea mariana (Mill.). In: Somatic embryogenesis in Woody Plants, Vol. 3. Jain, S., Gupta, P. and Newton, R. (Eds.), Kluwer Academic Publishers, Dordrecht the Netherlands, pp. 67–79.

    Chapter  Google Scholar 

  • Kozlowski, T.T., and Davies, W.J. 1975. Control of water balance in transplanted trees. Arboriculture, 1: 1–10.

    Google Scholar 

  • Landsberg, J.J. 1986. Physiological Ecology of Forest Production. Academic Press, NY.

    Google Scholar 

  • Libby, W.J., and Rauter, R.M. 1984. Advantages of clonal forestry. For. Chron. 60: 145–149.

    Google Scholar 

  • MacDonald, B. 1986. Practical Woody Plant Propagation for Nursery Growers. Dioscorides Press, Portland, OR.

    Google Scholar 

  • Margolis, H.A., and Brand, D.G. 1990. An ecophysiological basis for understanding plantation establishment. Can. J. For. Res. 20: 375–390.

    Article  Google Scholar 

  • Marsden, B.J., Lieffers, V.J., and Zwiazek, J.J. 1996. The effect of humidity on photosynthesis and water relations of white spruce seedlings during the early establishment phase. Can. J. For. Res. 26: 1015–1021.

    Article  Google Scholar 

  • McKeand, S.E. 1985. Expression of mature characteristics by tissue culture plantlets derived from embryos of loblolly pine. HortSci. 110: 619–623.

    Google Scholar 

  • Mohammed, G.H. and Vidaver, W.E. 1991. Plantlet morphology and the regulation of net water loss in tissue-cultured Douglas-fir. Physiol. Plant. 83: 117–121.

    Article  Google Scholar 

  • Nsangou, M. 1994. A comparative study on the developmental morphology of propagules regenerated via somatic and zygotic embryogenesis of hybrid larch (Larix x eurolepis Henry) and red spruce (Picea rubens Sarg.). Ph.D. Thesis, Dept. of Forest Ecosystem Science. Univ. Maine, Orono, ME 150 pp.

    Google Scholar 

  • Ohba, K. 1993. Clonal forestry with Sugi (Cryptomeria japonica). In: Clonal Forestry: II. Conservation and Application. Ahuja, M.R. and Libby, A.J. (Eds.), Springer-Verlag, NY. pp. 66–90.

    Chapter  Google Scholar 

  • Pallardy, S.G., Cermâk, J., Ewers, F.W., Kaufmann, M.R., Parker, W.C., and Sperry, J.S. 1995. Water transport dynamics in trees and stands. In: Resource Physiology of Conifers: Acquisition, Allocation and Utilization, W.K. Smith, and T.M. Hinckley (Eds.), Academic Press, NY. pp. 301–389.

    Google Scholar 

  • Rebbeck, J., Jensen, K.F., and Greenwood, M.S. 1982. Ozone effects on grafted juvenile and mature red spruce: Photosynthesis, stomacal conductance, and chlorophyll concentration. Can. J. For. Res. 23: 450–456.

    Article  Google Scholar 

  • Ritchie, G.A. 1991. The commercial use of conifer rooted cuttings in forestry: a world overview. New For. 5: 247–275.

    Article  Google Scholar 

  • Ritchie, G.A. 1994. Production of Douglas-fir, Pseudotsugga menziesii (Mirb.) Franco, rooted cuttings for reforestation by Weyerhaeuser Company. Comb. Proc. Int. Plant Propagators’ Soc. 43: 68–72.

    Google Scholar 

  • Ritchie, G.A., and Dunlap, J.R. 1980. Root growth potential: its development and expression in forest tree seedlings. N. Z. J. For. Sci. 10: 218–248.

    Google Scholar 

  • Ritchie, G.A., and Long, A.J. 1986. Field performance of micropropagated Douglas-fir. New Zealand J. For. Sci. 16: 343–356.

    Google Scholar 

  • Ritchie, G.A., Tanaka, Y., and Duke, S.D. 1992. Physiology and morphology of Douglas-fir rooted cuttings compared to seedlings and transplants. Tree Physiol. 10: 179–194.

    Article  PubMed  Google Scholar 

  • Ritchie, G.A., Tanaka, Meade, R., and Duke, S.D. 1993. Field survival and early height growth of Douglas-fir cuttings: relationship to stem diameter and root system quality. For. Ecol. Manage. 60: 237–256.

    Article  Google Scholar 

  • Ritchie, G.A., Duke, S.D., and Timmins, R. 1994. Maturation in Douglas-fir: II. Maturation characteristics of genetically matched Douglas-fir seedlings, rooted cuttings and tissue culture plantlets during and after 5 years of field growth. Tree Physiol. 14: 1261–1276.

    Article  PubMed  Google Scholar 

  • Roberts, D.R., Webster, F.B., Cyr, D.R., Edmonds, T.K., Grimes, S.M.A., and Sutton, B.C.S. 1995. A delivery system for naked somatic embryos of interior spruce. In: Automation and Environmental Control in Plant Tissue Culture. Aitken-Christie, J., Kozai, T., and Smith M.A.L. (Eds.), Kluwer Academic Publishers, Dordrecht. the Netherlands, pp. 245–256.

    Google Scholar 

  • Russell, J.H. 1993. Clonal forestry with yellow-cedar. In: Clonal Forestry: II. Conservation and Application. Ahuja, M.R. and Libby, A.J. (Eds.), Springer-Verlag, NY. pp. 188–201.

    Chapter  Google Scholar 

  • Russell, J.H., Grossnickle, S.C., Ferguson, C., and Carson D.W. 1990. Yellow-cedar stecklings: Nursery production and field performance. FRDA Rep. 148. British Columbia Ministry of Forests, Victoria, B.C. 20 p.

    Google Scholar 

  • Sands, R. 1984. Transplanting stress in radiata pine. Aust. For. Res. 14: 67–72.

    Google Scholar 

  • Sanford, I.R., and Jarvis, P.G. 1986. Stomatal responses to humidity in selected conifers. Tree Physiol. 2: 89–103.

    Article  Google Scholar 

  • Scagel, R., Bowden, R., Madill, M., and Kooistra, C. 1993. Provincial seedling stock type selection and ordering guidelines. B.C. Ministry of Forests, Victoria, B.C. p 75.

    Google Scholar 

  • Shackel, K.A., Novello, V. and Sutter, E.G. 1990. Stomatal function and cuticular conductance in whole tissue-cultured apple shoots. J. Am. Soc. Hortic. Sci. 115: 468–472.

    Google Scholar 

  • Simpson, D.G. 1990. Frost hardiness, root growth capacity and field performance relationships in interior spruce, lodgepole pine, Douglas-fir and western hemlock seedlings. Can. J. For. Res. 20: 566–572.

    Google Scholar 

  • Smith, D.R. 1986. Radiata pine. In: Biotechnology in Agriculture and Forestry, Vol. 1. Bajaj, Y.P.S. (Ed.), Springer-Verlag, NY. pp. 274–290.

    Google Scholar 

  • Smith, D.R. 1997. The role of in vitro methods in pine plantation establishment: The lesson from New Zealand. Plant Tissue. Cul. Biotech. 3: 63–73.

    Google Scholar 

  • Smith, D.R., Warr, A., Grace, L.J., Walter, C., and Hargreaves, C.L. 1994. Somatic embryogenesis joins the plantation forestry revolution in New Zealand. Biological Sciences Symposium, TAPPI Press, Atlanta, pp. 19–29.

    Google Scholar 

  • Stimart, D.P., and Harbage, J.F. 1993. Growth of rooted ‘Gala’ apple microcuttings ex vitro as influenced by initial adventitious count. HortSci. 28: 664–666.

    Google Scholar 

  • Stone, E.C. 1955. Poor survival and the physiological condition of planting stock. For. Sci. 1: 89–94.

    Google Scholar 

  • Sutter, E.G., and Langhans, R.W. 1982. Formation of epicuticular wax and its effect on water loss in cabbage plants regenerated from shoot-tip culture. Can. J. Bot. 60: 2896–2902.

    Article  Google Scholar 

  • Talbert, C.B., Ritchie, G.A., and Gupta, P. 1993. Conifer vegetative propagation: an overview from a commercialization perspective. In: Clonal Forestry I: Genetics and Biotechnology. Ahuja, M.R. and Libby, W.J. (Eds.), Springer-Verlag, NY. pp. 145–181.

    Chapter  Google Scholar 

  • Tautorus, T.E., Fowke, L.C., and Dunstan, D.I. 1991. Somatic embryogenesis in conifers. Can. J. Bot. 69: 1873–1899.

    Article  Google Scholar 

  • von Arnold, S., Egertsdotter, U., Ekberg, I., Gupta, P., Mo, H. and Nörgaard, J. 1995. Somatic embryogenesis in Norway spruce (Picea abies). In: Somatic embryogenesis in Woody Plants, Vol. 3. Jain, S., Gupta, P. and Newton, R. (Eds.), Kluwer Academic Publishers, Dordrecht the Netherlands, pp. 17–36.

    Chapter  Google Scholar 

  • Watts, M.P., Blakeway, F.C., Herman, B., and Denison, N. 1997. Biotechnology developments in tree improvement programmes in commercial forestry in South Africa. South African J. Sci. 93: 100–102.

    Google Scholar 

  • Watts, W.R., Neilson, R.E., and Jarvis, P.G. 1976. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr). VII. Measurements of stomatal conductance and 14CO2 uptake in a forest canopy. J. Appl. Ecol. 13: 623–638.

    Article  Google Scholar 

  • Webster, F.B., Roberts, D.R., McInnis, S.M. and Sutton, B.C.S. 1990. Propagation of interior spruce by somatic embryogenesis. Can. J. For. Res. 20: 1759–1765.

    Article  Google Scholar 

  • Zobel B.J., and Talbert, J.T. 1984. Applied Forest Tree Improvement. John Wiley & Sons, NY.

    Google Scholar 

  • Zsuffa, L. Sennerby-Forsse, L. Weisgerber, H. and Hall, R.B. 1993. Strategies for clonal forestry with poplars, aspens, and willows. In: Clonal Forestry: II. Conservation and Application. Ahuja, M.R. and Libby, A.J. ( Eds. ), Springer-Verlag, NY. pp. 91–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grossnickle, S.C. (1999). Performance of Conifer Stock Produced Through Somatic Embryogenesis. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3032-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3032-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5129-5

  • Online ISBN: 978-94-017-3032-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics