Skip to main content

Control of Plant Organogenesis: Genetic and Biochemical Signals in Plant Organ form and Development

  • Chapter
Thin Cell Layer Culture System: Regeneration and Transformation Applications

Abstract

Plant growth and development is a continuous process throughout the lifetime of a plant, contrasting to animals in which development of all major organs is defined at an early developmental stage. Determinate growth results in organs of limited maximum size, while indeterminate growth produces tissues of undefined maximum size. Shoot and root apical meristems (SAMs and RAMs) have unlimited, indeterminate growth along a longitudinal axis, while lateral organs (leaves) and meristems have determinate growth patterns for all three developmental axes. It is the spatially and temporally coordinated developmental events of the SAM and RAM that result in the final plant body. The shoot system of plants is Ruined both during embryonic and non-embryonic development, each governed by different control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbacher, R.A., Schiefelbein, J.W. and Benfey, P.N. (1994) The genetic and molecular basis of root development, Annu. Rev. Plant Physiol. Plant Mol. Biol 45, 25–45.

    Article  CAS  Google Scholar 

  • Ahmad, M. and Cashmore, A. R. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature 366, 162–166.

    CAS  Google Scholar 

  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant, Plant Cell 9, 841–857.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, J. and Smyth, D.R. (1999) two Arabidopsis genes that control carpel development in parallel with AGAMOUS, Development 126, 2377–2386.

    Google Scholar 

  • Arumingtyas, J., Floyd, R.S., Gregory, M.J. and Murfet, I.C. (1992) Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants, Pisum Genet 24, 17–31.

    Google Scholar 

  • Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I. And Morelli, G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana, Development 121, 4171–4182.

    Google Scholar 

  • Baluska, F. and Hasenstein, K.H. (1997) Root cytoskeleton: its role in perception of and response to gravity, Planta 203, S69 - S78.

    Article  PubMed  CAS  Google Scholar 

  • Baumberger, N., Ringli, C. and Keller, B. (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana, Genes Dev 15, 1128–1139.

    Article  PubMed  CAS  Google Scholar 

  • Becraft, P.W., Stinard, P.S., McCarty, D.R. (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation, Science 273, 1406–1409.

    Article  PubMed  CAS  Google Scholar 

  • Beekman, T., Burssens, S. and Inzé, D. (2001) The peri-cell-cycle in Arabidopsis, J. Exp. Bot 52, 403–411.

    Article  Google Scholar 

  • Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M-T. and Aeschbacher, R.A. (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis, Development 119, 53–70.

    Google Scholar 

  • Bennett, M.J., Marchant, A., Green, H.G, May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schultz, B. and Feldmann, K.A. (1996)Arabidopsis AUX] gene: a pennease-like regulator of root gravitropism, Science 273, 948–950.

    Google Scholar 

  • Bennett, M.J., Marchant, A., May, S.T. and Swamp, R. (1998) Going the distance with auxin: unraveling the molecular basis of auxin transport, Phil. Trans. R. Soc. London B 353, 1511–1515.

    Article  CAS  Google Scholar 

  • Bennet, S.R.M., Alvarez, J., Bossinger, G and Smyth, D.R. (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana, Plant J 8, 505–520.

    Article  Google Scholar 

  • Berger, F., Haseloff, J., Schiefenbein, J. and Dolan, L. (1998) Positional information in the root epidermis is defined during embryogenesis and acts in domains with strict boundaries, Cure. Biol 8, 421–430.

    Article  CAS  Google Scholar 

  • Berger, F., Linstead, P., Dolan, L. and Haselof, J. (1998b) Stomata patterning on the hypocotyls of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning, Dev. Biol 194, 226–234.

    Article  PubMed  CAS  Google Scholar 

  • Berger, D. and Altmann, T. (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana, Genes Des 14, 1119–1131.

    CAS  Google Scholar 

  • Berleth, T. and Jürgens, G (1993) The role of the monopteros gene in organizing the basal body region of the Arabidopsis embryo, Development 118, 575–597.

    Google Scholar 

  • Bibikova, T.N. (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana, Development 125, 2925–2934.

    PubMed  CAS  Google Scholar 

  • Bibikova, T.N., Blancaflor, E.B. and Gilroy, S. (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana, Plant J 17, 657–665.

    Article  PubMed  CAS  Google Scholar 

  • Blasquez, M.A., Soowal, L.N., Lee, I. And Weigel, D. (1997) LEAFY expression and flower initiation in Arabidopsis, Development 124, 3835–3844.

    Google Scholar 

  • Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C. (1998) AGO] defines a novel locus of Arabidopsis controlling leaf development, EMBOJ 17, 170–180.

    CAS  Google Scholar 

  • Bowman, J.L. and Smyth, D.R. (1999) CRAB’S CLAW, a gene that regulates carpel andnectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains, Development 126, 2387–2396.

    CAS  Google Scholar 

  • Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997) Inflorescence commitment and architecture in Arabidopsis, Science 275, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Brandstatter, I. and Kieber, J.J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin inArabidopsis, Plant Cell 10, 1009–1019.

    PubMed  CAS  Google Scholar 

  • Broer, I., Dröge-Laser, W., Barker, R.F., Neumann, K., Klipp, W. and Pühler, A. (1995) Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation, Plant Mol. Biel 27, 41–57.

    Article  CAS  Google Scholar 

  • Byrne, M., Barley, R., Curtis, M., Arroyo, J., Dunham, M., Hudson, A. and Martienssen, R. (2000) Asymmetric leavesl mediates leaf patterning and stem cell function in Arabidopsis, Nature 408, 967–971.

    Article  PubMed  CAS  Google Scholar 

  • Candela, H., Martinez, L.A. and Micol, J.L. (1999) Venation pattern formation in Arabidopsis thaliana vegetative leaves, Dev. Biol 205, 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Carland, F.M. and McHale, N.A. (1996)LOPI, a gene involved in auxin transport and vascular patterning in Arabidopsis, Development 122, 1811–1819.

    Google Scholar 

  • Carland, F.M., Berg, B.L., FitzGerald, J.N., Jinamornphongs, S., Nelson, T. and Keith, B. (1999) Genetic regulation of vascular tissue patterning in Arabidopsis, Plant Cell 11, 2123–2137.

    PubMed  CAS  Google Scholar 

  • Castle, L.A. and Meinke, D.W. (1994) AFUSCA gene of Arabidopsis encodes a novel protein essential for plant development, Plant Cell 6, 25–41.

    PubMed  CAS  Google Scholar 

  • Catoira, R., Timmers, A.C.J., Maillet, F., Galera, C., Penmetsa, R.V., Cook, D., Dénarié, J. and Gough, C. (2001) The HCL gene of Medicago trunculata controls Rhizobium-induced root hair curling, Development 128, 1507–1518.

    PubMed  CAS  Google Scholar 

  • Cebolla, A., Vinardell, J.M., Kiss, E., Olah, B., Roudier, F., Kondorosi, A. and Kondorosi, E. (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants, EMBO J 18, 4476–4484.

    Article  PubMed  CAS  Google Scholar 

  • Celenza, J.L. Jr., Grisafi, P.L. and Fink, G.R. (1995) A pathway for lateral root formation in Arabidopsis thaliana, Genes Dev 9, 2131–2142.

    Article  PubMed  CAS  Google Scholar 

  • Cerioli, S., Marocco, A., Maddaloni, M., Motto, M. and Salamini, F. (1994) Early events in maize leaf epidermis formation as revealed by cell lineage studies, Development 120, 2113–2120.

    Google Scholar 

  • Chaudhwy, A.M., Letham, S., Craig, S. and Dennis, E.S. (1993) amp] — a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering, Plant J 4, 907–916.

    Google Scholar 

  • Chaudhury, A.M., Ming, L., Miller, C., Craig, S., Dennis, E.S. and Peacock, W.J. (1997) Fertilization-independent seed development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 94, 4223–4228.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J-G, Ullah, H., Young, J.C., Sussman, M.R. and Jones, A.M. (2001)ABPI is required for organized cell elongation and division in Arabidopsis embryogenesis, Genes Dev 15, 902–911.

    Google Scholar 

  • Cheng, J.C., Seeley, K.A. and Sung, Z.R. (1995) RNILI and RML2, Arabidopsis genes required for cell proliferation at the root tip, Plant Physiol 107, 365–376.

    CAS  Google Scholar 

  • Chien, J.C. and Sussex, I.M. (1996) Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh., Plant Physiol 111, 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  • Chory, J. (1991) A genetic model for light-regulated seedling development in Arabidopsis, Development 115, 337–354.

    Google Scholar 

  • Chuck, G, Lincoln, C. and Hake, S. (1996) Knotl induces lobed leaves with ectopie meristems when overexpressed in Arabidopsis, Plant Cell 8, 1277–1289.

    CAS  Google Scholar 

  • Clark, S.E., Running, M.P. and Meyerowitz, E.M. (1995) CLAVATA3 is a regulator of shoot and floral meristem development affecting the same processes as CIAVATA1, Development 121, 2057–2067.

    CAS  Google Scholar 

  • Clark, S.E., Williams, R.W. and Meyerowitz, E.M. (1997a) The CLAVATA and SHOOT IvIERISTENILESS loci competitively regulate meristem activity in Arabidopsis, Development 122, 1567–1575.

    Google Scholar 

  • Clark, S.E., Williams, R.W. and Meyerowitz, E.M. (1997b) The CLAVATA gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis, Cell 89, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Cleary, A.L. and Smith, L.G. (1998) The Tangled] gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development, Plant Cell 10, 1875–1888.

    PubMed  CAS  Google Scholar 

  • Cnops, G, Wang, X., Lnstead, P., Van Montagu, M., Van Lijsebettens, M. and Dolan, L. (2000) TORNADO] and TORNADO2 are required for the specification of radial and circumferential pattern in the Arabidopsis root, Development 127, 3385–3394.

    CAS  Google Scholar 

  • Coen, E.S. and Nugent, J.M. (1994) Evolution of flowers and inflorescences, Development Suppl, 107–116.

    Google Scholar 

  • Cohn, J., Day, R.B. and Stacey, G (1998) Legume nodule organogenesis, Trends Plant Sci 3, 105–110. Cordewener, J.H.G., Busink, R., Traas, J.A., Custers, J.B.M., Dons, H.J.M., van Lookeren Campagne

    Google Scholar 

  • M.M. (1994) Induction of microspore embryogenesis in Brassica napes L. is accompanied by specific changes in protein synthesis, Planta 195, 50–56.

    Google Scholar 

  • Crespi, M., Vereecke, D., Temmerman, W., Van Montagu, M. and Desomer, J. (1994) The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants, J. Bact 176, 2492–2501.

    PubMed  CAS  Google Scholar 

  • Davies, P.J. (1995) The plant hormones: their nature, occurrence and functions, In: Davies, P.J. (ed.) Plant hormones: physiology, biochemistry and molecular biology (2“d ed.), Kluwer Academic Publishers, The Netherlands, pp. 1–12.

    Google Scholar 

  • De Klerk, G.J., Arnholdt-Schmitt, B., Lieberei, R. and Neumann, K.H. (1997) Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects, Biol. Plant 39, 53–66.

    Article  Google Scholar 

  • DeMason, D.A. and Villani, P.J. (2001) Genetic control of leaf development in pea (Pisum sativum), Intl. J. Plant Sci 162, 493–511.

    Article  CAS  Google Scholar 

  • Deng, X.W., Caspar, T. and Quail, P.H. (1991) Copl — a regulatory locus involved in light-controlled development and gene expression in Arabidopsis, Genes Der. 5, 1172–1182.

    Article  CAS  Google Scholar 

  • Dengler, N.G. and Tsukaya, H. (2001) Leaf morph genesis in dicotyledons: current issues, Intl. J. Plant Sci 162, 459–464.

    Article  Google Scholar 

  • Desnos, T., Orbovic, V., Bellini, C., Kronenberger, J., Caboche, M., Traas, J. and Höfte, H. (1996) Procustel mutants identify two distinct genetic pathways controlling hypocotyls cell elongation, respectively in dark-and light-grown Arabidopsis seedlings, Development 122, 683–693.

    CAS  Google Scholar 

  • De Veylder, L., De Almeida Engler, J., Burssens, S., Manevski, A., Lescure, B., Van Montagu, M., Engler, G. and Inzé, D. (1999) A new D-type cyclin of Arabi dopsis thaliana expressed during lateral root primordial formation, Planta 208, 453–462.

    Article  PubMed  Google Scholar 

  • Vries, S.C., Booij, H., Meyerink, P., Huisman, G., Wilde, D., Thomas, T.L. and Van Kammen, A. (1998) Acquisition of embryogenic potential in carrot-suspension cultures, Planta 176, 196–204.

    Article  Google Scholar 

  • Deyholos, M.K., Cordner, G, Beebe, D. and Sieburth, L.E. (2000) The SCARFACE gene is required for cotyledon and leaf vein patteming, Development 127, 3205–3213.

    PubMed  CAS  Google Scholar 

  • Di Cristina, M., Sessa, G, Dolan, L., Linstead, P., Baima, S., Ruberti, I. and Morelli, G: (1996) The Arabidopsis Athb-10 (GLABRA 2) is an HD-zip protein required for regulation of root hair development, Plant J 10, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Diener, A., Li, H., Zhou, W-X., Whoriskey, W., Nes, W. and Fink, G (2000) STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants, Plant Cell 12, 853–870.

    CAS  Google Scholar 

  • Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y. et al (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root, Cell 86, 423–433.

    Article  PubMed  Google Scholar 

  • Dodeman, V.L., Ducreux, G. and Kreis, M. (1997) Zygotic embryogenesis versus somatic embryogenesis, J. Exp. Bot 48, 1493–1509.

    CAS  Google Scholar 

  • Doebley, J., Stec, A. and Hubbard, L. (1997) The evolution of apical dominance in maize, Nature 386, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Doerner, P., Jorgensen, J-E., You, R., Steppuhu, J. and Lamb, C. (1996) Control of root growth and development by cyclin expression, Nature 380, 520–523.

    Article  PubMed  CAS  Google Scholar 

  • Dolan, L., Janmaat, K., Willemsen, V, Linstead, P., Poethig, S., Roberts, K. and Scheres, B. (1993) Cellular organization of the Arabidopsis root, Development 119, 71–84.

    PubMed  CAS  Google Scholar 

  • Dolan, L., Duckett, C., Grierson, C., Linstead, P., Schneider, K., Lawson, E., Dean, C., Poethig, S. and Roberts, K. (1994) Clonal relation and patterning in the root epidermis of Arabidopsis, Development 120, 2465–2474.

    CAS  Google Scholar 

  • Dolan, L. and Costa, S. (2001) Evolution and genetics of root hair stripes in the root epidermis, J. Exp. Bot 52, 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly, P.M., Bonetta, D., Tsukaya, H., Dengler, R.E. and Dengler, N.G. (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis, Dev. Biol 215, 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky, J.G, Doerner, P.W., Colon-Carmona, A. and Rost, T.L. (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis, Plant Physiol 124, 1648–1657.

    Article  PubMed  CAS  Google Scholar 

  • Duckett, C.M., Oparka, K.J., Prior, D.A.M., Dolan, L. and Roberts, K. (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development, Development 120, 3247–3255.

    CAS  Google Scholar 

  • Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z. and Laux, T. (1996) The SHOOTMERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE, Plant J 10, 967–979.

    Article  PubMed  CAS  Google Scholar 

  • Eshed, Y., Baum, S.F. and Bowman, J.L. (1999) Abaxial cell fate in the carpels is established by two distinct mechanisms, Cell 99, 199–209.

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y. and Hirsch, A.M. (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa, Plant Physiol 116, 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Favery, B., Ryan, E., Foreman, J., Linstead, P., Boudonck, K., Steer, M., Shaw, P. and Dolan, L. (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis, Genes Dev 15, 79–89.

    CAS  Google Scholar 

  • Filonova, L.H., Bozhkov, P.V., Brukhin, V.B., Daniel, G, Zhitovsky, B. and von Arnold, S. (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce, J. Cell Sci 113, 4399–4411.

    PubMed  CAS  Google Scholar 

  • Fleming, A.J., McQueen-Mason, S., Mandel, T. and Kuhelmeier, C. (1997) Induction of leaf primordia by the cell-wall protein expansin, Science 276, 1415–1418.

    Article  CAS  Google Scholar 

  • Fleming, A.J., Caderas, D., Wehrli, E., McQueenMason, S. and Kuhlemeier, C. (1999) Analysis of expansin-induced morphogenesis on the apical meristem of tomato, Planta 208, 166–174.

    Article  CAS  Google Scholar 

  • Folkers, U., Berger, J. and Hülskamp, M. (1996) Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branch initiation regulators and cell growth, Development 124, 3779–3786.

    Google Scholar 

  • Foreman, J. and Dolan, L. (2001) Root hairs as a model system for studying plant cell growth, Ann. Bot 88, l-7.

    Google Scholar 

  • Freeling, M. and Hake, S. (1985) Developmental genetics of mutants that specify knotted leaves in maize, Genetics 111, 617–634

    PubMed  CAS  Google Scholar 

  • Freeling, M. (2001) Regional identities specified along the axes of the maize leaf, Develop. Growth Differ 43, Si.

    Google Scholar 

  • Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P.N. and Tasaka, M. (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana, Plant J 14, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Galway, M.E., Masucci, J.D., Lloyd, A.M., Walbot, V., Davis, R.W. and Schiefelbein, J.W. (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root, Dee Biol 166, 740–754.

    Article  CAS  Google Scholar 

  • Galway, M.E., Lane, D.C. and Schiefelbein, J.W. (1999) Defective control of growth rate and cell diameter in tip-growing root hairs of the rhd4 mutant of Arabidopsis thaliana, Can. J. Bot 77, 494–507.

    Google Scholar 

  • Gälweiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. (1998) Regulator of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue, Science 282, 2226–2229.

    Article  PubMed  Google Scholar 

  • Gaudin, V., Lunness, P.A., Fobert, P.R., Towers, M., Riou-Khamlichi, C., Murray, J.A., Coen, E. and Doonan, J.H. (2000) The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene, Plant Physiol 122, 1137–1148.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, M., Yang, M. and Sack, F.D. (1998) Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips, Planta 205, 522–530.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S.B. (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration, Annu. Rev. Plant Physiol. Plant Mol. Biol 51, 223–256.

    Article  CAS  Google Scholar 

  • Gilroy, S. and Jones, D.L. (2000) Through form to function: root hair development and nutrient uptake, Trends Plant Sci 5, 56–60.

    Article  PubMed  CAS  Google Scholar 

  • Glaway, M.E., Masucci, J.D., Lloyd, A.M., Walbot, V., Davis, R.W. and Schiefelbein, J.W. (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root, Dev Biol 166, 740–754.

    Article  Google Scholar 

  • Glover, B.J., Perez-Rodriguez, M. and Martin, C. (1998) Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor, Development 125, 3497–3508.

    PubMed  CAS  Google Scholar 

  • Glover, B.J. (2000) Differentiation in plant epidermal cells, J. Exp. Bot 51, 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M. and Coupland, G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis, Nature 386, 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Gourlay, C.W., Hofer, J.M. and Ellis, T.H.N. (2000) Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEA, AFILA, and TENDRIL-LESS, Plant Cell 12, 1279–1294.

    PubMed  CAS  Google Scholar 

  • Grbié, V. and Bleecker, A.B. (2000) Axillary meristem development in Arabidopsis thaliana, Plant J 21, 215–223.

    Article  Google Scholar 

  • Grierson, C.S., Roberts, K., Feldmann, K.A. and Dolan, L. (1997) The COW] locus of Arabidopsis acts after RHD2, and in parallel with RFID3 and TIP I, to determine the shape, rate of elongation, and number of root hairs produced from each site of hair formation, Plant Physiol 115, 981–990.

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus, U., Spillane, C., Page, D.R. and Köhler, C. (2001) Genomic imprinting and seed development: endosperm formation with and without sex, Curr: Opin. Plant Biol 4, 21–27.

    Article  CAS  Google Scholar 

  • Hamann, T., Mayer, U. and Jürgens, G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo, Development 126, 1387–1395.

    PubMed  CAS  Google Scholar 

  • Harada, J.J. (1999) Signaling in plant embryogenesis, Curr: Opin. Plant Biol 2, 23–27.

    Article  CAS  Google Scholar 

  • Hardtke, C.S. and Berleth, T. (1998) The Arabidopsis gene IvIONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development, EIvIBOJ 17, 1405–1411.

    CAS  Google Scholar 

  • Hareven, D., Gutfinger, T., Pamis, A., Eshed, Y. and Lifschitz, E. (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato, Cell 84, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, M.T., Morikami, A. and Benfey, P.N. (1995) Conditional root expansion mutants of Arabidopsis, Development 121, 1237–1252.

    PubMed  CAS  Google Scholar 

  • Hayashi, H., Czaja, I., Lubenow, H., Schell, J. and Walden, R. (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro, Science 258, 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  • Heidstra, R., Yang, W.C., Yalcin, Y., Peck, S., Emons, A.M., van Kammen, A. and Bisseling, T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction, Development 124, 1781–1787.

    PubMed  CAS  Google Scholar 

  • Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G, Hauser, M.T. and Benfey, P.N. (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling, Cell 101, 555–567.

    Article  PubMed  CAS  Google Scholar 

  • Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots, Plant J 10, 845–857.

    Article  CAS  Google Scholar 

  • Hobbie, L., McGovern, M., Hurwitz, L.R., Pierro, A., Liu, N.Y., Bandyopadhyay, A. and Estelle, M. (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development, Development 127, 23–32.

    PubMed  CAS  Google Scholar 

  • Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A. and Ellis, N. (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea, Curs Biol 7, 581–587.

    CAS  Google Scholar 

  • Hofer, J.M.I. and Ellis, T.H.N. (1998) The genetic control of patterning in pea leaves, Trends Plant Sci 3, 439–444.

    Article  Google Scholar 

  • Holdsworth, M., Kurup, S. and McKibbin, R. (1999) Molecular and genetic mechanisms regulating the transition from embryo development to germination, Trends Plant Sci 4, 275–280.

    Article  Google Scholar 

  • Hong, S.K., Kitano, H., Satoh, H. and Nagato, Y (1996) How is embryo size genetically regulated in rice?, Development 122, 2051–2058.

    PubMed  CAS  Google Scholar 

  • Hülskamp, M., Misra, S. and Jürgens, G. (1994) Genetic dissection of trichome cell development in Arabidopsis, Cell 76, 555–566.

    Article  PubMed  Google Scholar 

  • Hülskamp, M. and Schnittger, A. (1998) Spatial regulation of trichome formation in Arabidopsis thaliana, Sem. Cell Deu Biol 9, 213–220.

    Article  Google Scholar 

  • Hülskamp, M., Schnittger, A. and Folkers, U. (1998) Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system, Intl. Rev. Cytol. 186, 147–178.

    Article  Google Scholar 

  • Hung, C.Y., Lin, Y., Zhang, M., Pollock, S., Marks, M.D. and Schiefelbein, J. (1998) A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyls epidermis of Arabidopsis, Plant Physiol 117, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, T., Ueguchi, C. and Mizuno, T. (1998) Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis, Proc. Natl. Acad. Sci. USA 95, 2691–2696.

    Article  PubMed  CAS  Google Scholar 

  • Irish, V.F. and Sussex, I.M. (1992) A fate map of the Arabidopsis embryonic shoot apical meristem, Development 115, 745–753.

    Google Scholar 

  • Jackson, D., Veit, B. and Hake, S. (1994) Expression of maize KNOTTED] related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot, Development 120, 405–413.

    CAS  Google Scholar 

  • Jang, J-C., Fujioka, S., Tasaka, M., Seto, H., Takatsuto, S., Ishii, A., Aida, M., Yoshida, S. and Sheen, J. (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutant of Arabidopsis thaliana, Genes Dev 14, 1485–1497.

    PubMed  CAS  Google Scholar 

  • Janssen, B.J., Lund, L. and Sinha, N. (1998a) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf, Plant Physiol 117, 771–786.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, B.J., Williams, A., Chen, J.J., Mathem, J., Hake, S. and Sinha, N. (1998b) Isolation and characterization of two knotted-like homeobox genes from tomato, Plant Mol. Biol 36, 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Jürgens, G, Mayer, U., Tones-Ruiz, R.A., Berleth, T. and Miséra, S. (1991) Genetic analysis of pattern formation in the Arabidopsis embryo, Deu Supp. 1, 27–38.

    Google Scholar 

  • Jürgens, G, Grebe, M. and Steinmann, T. (1997) Establishment of cell polarity during early plant development, Curs Opin. Cell Biol 9, 849–852.

    Article  Google Scholar 

  • Keddie, J.S., Carroll, B., Jones, J.D.G. and Gnuisem, W. (1996) The DCL gene of tomato is required for chloroplast development and palisade morphogenesis in leaves, EMBO J 15, 4208–4217.

    PubMed  CAS  Google Scholar 

  • Kerk, N.M. and Feldmann, L.J. (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems, Development 121, 2825–2833.

    CAS  Google Scholar 

  • Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G. and Hake, S. (1997) Loss-of-function mutations in the maize homeobox gene, knotted], are defective in shoot meristem maintenance, Development 124, 3045–3054.

    PubMed  CAS  Google Scholar 

  • Kessler, S., Kim, M., Pham, T., Weber, N. and Sinha, N. (2001) Mutations altering leaf morphology in tomato, Intl. J. Plant Sei 162, 475–492.

    Article  CAS  Google Scholar 

  • Kieber, J.J., Rothenberg, M., Roman, G, Feldmann, K.A. and Ecker, J.R. (1993) CTRI,a negative regulator of the ethylene response pathway in Arabidopsis,encodes a member of Raf family of protein kinases, Cell 72, 427–551

    Google Scholar 

  • Kim, G-T., Tsukaya, H. and Uchimiya, H. (1998a) The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana, Planta 206, 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Kim, G-T., Tsukaya, H. and Uchimiya, H. (1998b) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells, GenesDev 12, 2381–2391.

    Article  CAS  Google Scholar 

  • Kinsman, E.A. and Pyke, K.A. (1998) Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves, Development 125, 1815–1822.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Eun, C-H., Hanai, H., Matsubayashi, Y., Sakagami, Y. and Kamada, H. (1999) Phytosulphokine-alpha, a peptidyl plant growth factor, stimulates somatic embryogenesis in carrot, J. Exp. Bot 50, 1123–1128.

    CAS  Google Scholar 

  • Koch, A.J. and Meinhardt, H. (1994) Biological pattern formation: from basic mechanisms to complex structures, Rev. Mod Phys 66, 1481–1507.

    Article  Google Scholar 

  • Koizumi, K., Sugiyama, M. and Fukuda, H. (2000) A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question, Development 127, 3197–3204.

    PubMed  CAS  Google Scholar 

  • Koltunow, A.M. (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules, Plant Cell 5, 1425–1437.

    PubMed  Google Scholar 

  • Koltunow, A.M., Bicknell, R.A. and Chaudhury, A.M. (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization, PlantPhysiol 108, 1345–1352.

    CAS  Google Scholar 

  • Körber, H., Strizhov, N., Staiger, D., Feldwisch, J., Olsson, O., Sandberg, G, Palme, K., Schell, J. and Koncz, C. (1991) T-DNA gene 5 of Agrobacterium modulates auxin response by auto-regulated synthesis of a growth hormone antagonist in plants, EMBO J 10, 3983–3991.

    PubMed  Google Scholar 

  • Krishnakumar, S. and Oppenheimer, D.G. (1999) Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation and pollen tube growth, Development 126, 3079–3088.

    PubMed  CAS  Google Scholar 

  • Krizek, B.A. (1999) Ectopie expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs, Des,. Genet 25, 224–236.

    CAS  Google Scholar 

  • Langdale, J.A. and Kidner, C.A. (1994) bundle sheath defective, a mutation that disrupts cellular differentiation in maize leaves, Development 120, 673–681.

    Google Scholar 

  • Larkin, J.C., Oppenheimer, D.G, Lloyd, A.M., Paparozzi, E.T. and Marks, M.D. (1994) Roles of the glabrous] and transparent testa glabra genes in Arabidopsis trichome development, Plant Cell 6, 1065–1076.

    PubMed  CAS  Google Scholar 

  • Larkin, J.C., Young, N., Prigge, M. and Marks, M.D. (1996) The control of trichome spacing and number in Arabidopsis, Development 122, 997–1005.

    PubMed  CAS  Google Scholar 

  • Larkin, J.C., Marks, M.D., Nadeau, J. and Sack, F. (1997) Epidermal cell fate and patterning in leaves, Plant Cell 9, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Laux, T., Mayer, K.F.X., Berger, J. and Jürgens, G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development 122, 87–96.

    PubMed  CAS  Google Scholar 

  • Laux, T. and Schoof, H. (1997) Maintaining the shoot meristem —the role of CLAVATAI, Trends Plant Sei 2, 325–327.

    Article  Google Scholar 

  • Lee, I., Wolfe, D.S., Nilsson, O. and Weigel, D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS, Curr. Biol 7, 95–104.

    Article  PubMed  Google Scholar 

  • Lee, M.M. and Schiefenbein, J. (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidennal cell patterning, Cell 99, 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.M. and Schiefenbein, J. (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis, Development 128, 1539–1546.

    PubMed  CAS  Google Scholar 

  • Lehman, A., Black, R. and Ecker, J.R. (1996) HOOKLESSI, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyls, Cell 85, 183–194.

    CAS  Google Scholar 

  • Lenhard, M. and Laux, T. (1999) Shoot meristem formation and maintenance, Curr. Opin. Plant Biol 2, 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Lerouge, P., Yroche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.C. and Dénarié, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determinded by a sulphated and acetylated glucosamine oligosaccharide signal, Nature 344, 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Leyser, H.M.O., Pickett, F.B., Dharmasiri, S. and Estelle, M. (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopie expression from the SAUR-ACI promoter, Plant J 10, 403–413.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Culligan, K., Dixon, R. and Chory, J. (1995) CUE]: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis, Plant Cell 7, 1599–1610.

    CAS  Google Scholar 

  • Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. and Hake, S. (1994) Aknotted]-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants, Plant Cell 6, 1859–1876.

    PubMed  CAS  Google Scholar 

  • Liu, C-M., Xu, Z-H. and Chua, N-H. (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis, Plant Cell 5, 621–630.

    PubMed  CAS  Google Scholar 

  • Lloyd, A.M., Schena, M., Walbot, V. and Davis, R.W. (1994) Epidermal cell fate determination in Arabidopsis: pattems defined by steroid-inducible regulator, Science 266, 436–439.

    Article  PubMed  CAS  Google Scholar 

  • Lomax, T.L., Muday, G.K. and Rubery, P.H. (1995) Auxin transport, In: Plant hormones: physiology, biochemistry, and molecular biology, Davies, P.J. (ed.), Dordrecht, Kluwer, 509–530.

    Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature 379, 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis, Development 125, 3027–3035.

    PubMed  CAS  Google Scholar 

  • Long, J.A. and Barton, M.K. (2000) Initiation of axillary and floral meristems in Arabidopsis, Dev. Biel 218, 341–353.

    Article  CAS  Google Scholar 

  • Long, S.R. (1996)Rhizobium symbiosis: Nod factors in perspective, Plant Cell 8, 1885–1898.

    Google Scholar 

  • Lotan, T., Ohto, M., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (1998) Arabidopsis LEAFY COTYLEDON] is sufficient to induce embryo development in vegetative cells, Cell 93, 1195–1205.

    CAS  Google Scholar 

  • Lu, P., Porat, R., Nadeau, J.A. and O’Neill, S.D. (1996) Identification of a meristem Ll layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes, Plant Cell 8, 2155–2168.

    PubMed  CAS  Google Scholar 

  • Lukowitz, W., Mayer, U. and Jürgens, G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product, Cell 84, 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Lund, S.T., Smith, A.G. and Hackett, W.P (1997) Differential gene expression in response to auxin treatment in the wild-type and roc, an adventitious rooting-incompetent mutant of tobacco, Plant Physiol 114, 1197–1206.

    PubMed  CAS  Google Scholar 

  • Luo, D. and Oppenheimer, D.G. (1999) Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci, Development 126, 5547–5557.

    PubMed  CAS  Google Scholar 

  • Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P. and Barton, M.K. (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE] gene, Development 126, 469–481.

    PubMed  CAS  Google Scholar 

  • Ma, H. (1999) Seed development: with or without sex?, Curr. Biol 9, R636 - R639.

    Article  PubMed  CAS  Google Scholar 

  • Mähönen, A.P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P.N. and Helariutta, Y. (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root, Genes Dev 14, 2938–2943.

    Article  PubMed  Google Scholar 

  • Malamy, J.E. and Benfey, P.N. (1997a) Analysis of SCARECROW expression using a rapid system for assessing transgene expression in Arabidopsis roots, Plant J 12, 957–963.

    Article  PubMed  CAS  Google Scholar 

  • Malamy, J.E. and Benfey, P.N. (1997b) Organization and cell differentiation in lateral roots of Arabidopsis thaliana, Development 124, 33–44.

    PubMed  CAS  Google Scholar 

  • Marchant, A., Kargul, J., May, S.T., Muller, P., Delban’e, A., Perrot-Rechenmann, C. and Bennett, M.J. (1999) AUX] regulates root gravitropism in Arabidoopsis by facilitating auxin uptake within root apical tissues, EvIBOJ 18, 2066–2073.

    CAS  Google Scholar 

  • Marks, M.D. (1997) Molecular genetic analysis of trichome development in Arabidopsis, Annu. Rev. Plant Physiol. Plant Mal. Biol 48, 137–163.

    Article  CAS  Google Scholar 

  • Marks, M.D. and Esch, J.J. (1992) Trichome formation in Arabidopsis as a genetic model system for studying cell expansion, Curr. Top. Plant Blocher?). Physiol 11, 131–142.

    Google Scholar 

  • Martin, C. and Glover, B.J. (1998) Cellular differentiation in the shoot epidermis, Curr. Opin. Plant Biol 1, 511–519.

    Article  PubMed  CAS  Google Scholar 

  • Masucci, J.D. and Schiefenbein, J.W. (1994) The rhd6 mutation of Arabidopsis alters root hair initiation through an auxin-and ethylene-associated process, Plant Physiol 106, 1335–1346.

    PubMed  CAS  Google Scholar 

  • Masucci, J.D. and Schiefenbein, J.W. (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root, Plant Cell 5, 1505–1517.

    Google Scholar 

  • Masucci, J.D., Rerie, W.G., Foreman, D.R., Zhang, M., Galway, M.E., Marks, M.D. and Schiefenbein, J.W. (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana, Development 122, 1253–1260.

    PubMed  CAS  Google Scholar 

  • Mathesius, U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase, J. Exp. Bot 52, 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Mathur, J., Spielhofer, P., Kost, B. and Chua, N-H. (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana, Development 126, 5559–5568.

    PubMed  CAS  Google Scholar 

  • Mathur, J. and Chua, N-H. (2000) Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes, Plant Cell 12, 465–477.

    PubMed  CAS  Google Scholar 

  • Mattsson, J., Sung, Z.R. and Berleth, T. (1999) Responses of plant vascular systems to auxin transport inhibition, Development 126, 2979–2991.

    PubMed  CAS  Google Scholar 

  • Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M, Jürgens, G and Laux, T. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell 95, 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, U. and Jürgens, G (1998) Pattern formation in plant embryogenesis: a reassessment, Seminars Cell Dev. Biol 9, 187–193.

    Article  CAS  Google Scholar 

  • Mayer, U., Torres-Ruiz, R.A., Berleth, T., Miséra, S. and Jürgens, G (1991) Mutations affecting body organization in the Arabidopsis embryo, Nature 353, 402–407.

    Article  Google Scholar 

  • Mayer, U., Buttner, G and Jürgens, G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene, Development 117, 149–162.

    Google Scholar 

  • Mayer, U., Herzog, U., Berger, F., Inzé, D. and Jürgens, G (1999) Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm, Euro J. Cell Biol 78, 100–108.

    Article  CAS  Google Scholar 

  • McConnell, J.R. and Barton, M.K. (1995) Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems, Dee, Genet 16, 358–366.

    Google Scholar 

  • McConnell, J.R. and Barton, M.K. (1998) Leaf polarity and meristem formation in Arabidopsis, Development 125, 2935–2942.

    PubMed  CAS  Google Scholar 

  • McHale, N.A. (1992) A nuclear mutation blocking initiation of the lamina in leaves of Nicotiana sylvestris, Planta 186, 355–360.

    Article  CAS  Google Scholar 

  • McHale, N.A. and Marcotrigiano, M. (1998) LAM] is required for dorsoventrality and lateral growth of the leaf blade in Nicotiana, Development 125, 4235–4243.

    CAS  Google Scholar 

  • McKibbin, R.S., I-Ialford, N.G. and Francis, D. (1998) Expression of fission yeast cdc25 alters the frequency of lateral root formation in transgenic tobacco, Plant Mol. Biol 36, 601–612.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D.W. (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons, Science 258, 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D.W., Franzmann, L.H., Nickle, T.C. and Yeung, E.C. (1994) Leafy cotyledon mutants of Arabidopsis, Plant Cell 6, 1049–1064.

    CAS  Google Scholar 

  • Mews, M., Sek, F.J., Volkmann, D. and John, P.C.L. (2000) Imunodetection of four mitotic cyclins and the Cdc2a protein kinase in maize root: their distribution in cell development and dedifferentiation, Protoplasma 212, 236–249.

    Article  CAS  Google Scholar 

  • Meyerowitz, E.M. (1997) Genetic control of cell division patterns in developing plants, Cell 88, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D.D., de Ruijter, N.C.A. and Emons, A.M.C. (1997) From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips, J. Exp. Bot 48, 1881–1896.

    CAS  Google Scholar 

  • Mizukami, Y. and Fischer, R.L. (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis, Proc. Natl. Acad. SM. USA 97, 942–947.

    Article  CAS  Google Scholar 

  • Mordhorst, A.P., Voerman, K.J., Hartog, M.V., Meijer, E.A., van Went, J., Koornneef, M. and de Vries, S.C. (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions, Genetics 149, 549–563.

    PubMed  CAS  Google Scholar 

  • Moussian, B., Schoof, H., Haecker, A., Jürgens, G and Laux, T. (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis, EMBO J 17, 1799–1809.

    Article  PubMed  CAS  Google Scholar 

  • Muehlbauer, G.J., Fowler, J.E. and Freeling, M. (1997) Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf, Development 124, 5097–5106.

    PubMed  CAS  Google Scholar 

  • Müller, A., Guan, C., Gälweiler, L., Tanzler, P., Huijser, P., Marchand, A., Parry, G., Bennett, M., Wisman, E. and Palme, K. (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control, EMBO J 17, 6903–6911.

    Google Scholar 

  • Muller, J-F., Goujaud, J. and Caboche, M. (1985) Isolation in vitro of napthaleneacetic acid-tolerant mutants of Nicotiana tabacum, which are impaired in root morphogenesis, Mol. Gen. Genet 199, 194–200.

    Article  CAS  Google Scholar 

  • Nambara, E., Keith, K., McCourt, P. and Naito, S. (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana, Development 121, 629–636.

    CAS  Google Scholar 

  • Napoli, C.A. and Ruehle, J. (1996) New mutations affecting meristem growth and potential in Petunia hybrida Vilm., J. Hered 87, 371–377.

    Article  Google Scholar 

  • Nishimura, A., Tamaoki, M., Sakamoto, T. and Matsuoka, M. (2000) Over-expression of tobacco knottedl-type class1 homeobox genes alters various leaf morphology, Plant Cell Physiol 41, 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Noda, K-I., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor, Nature 369, 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Ogas, J., Cheng, J-C., Sung, Z.R. and Somerville, C. (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant, Science 277, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Ohad, N., Margossian, L., Hsu, Y-C., Williams, C., Repetti, P. and Fischer R.L. (1996) A mutation that allows endosperm development without fertilization, Proc. Natl. Acad. Sci. USA 93, 5319–5324.

    Article  PubMed  CAS  Google Scholar 

  • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation, Plant Cell 3, 677–684.

    Google Scholar 

  • Oppenheimer, D.G, Pollock, M.A., Vacik, J., Szymanski, D.B., Ericson, B., Feldmann, K. and Marks, M.D. (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis, Proc. Natl. Acad. Sci. USA 94, 6261–6266.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, S., Yasutani, I., Fukuda, H., Komamine, A. and Sugiyama, M. (1998) Organogenic responses in tissue culture of srd mutants ofArabidopsis thaliana, Development 125, 135–142.

    PubMed  CAS  Google Scholar 

  • Pamis, A., Cohen, O., Gutfinger, T., Hareven, D., Zamir, D. and Lifschitz, E. (1997) The dominant developmental mutants of tomato, Mouse-ear and Curl are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene, Plant Cell 9, 2143–2158.

    Google Scholar 

  • Payne, T., Clement, J., Arnold, D. and Lloyd, A. (1999) Heterologous myb genes distinct from GUI enhance trichome production when overexpressed in Nicotiana tabacum, Development 126, 671–682.

    PubMed  CAS  Google Scholar 

  • Perazza, D., Vachon, G and Herzog, M. (1998) Gibberelins promote trichome formation by up-regulating GLABROUS] in Arabidopsis, Plant Physiol 117, 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, F.B., Champagne, M.M. and Meeks-Wagner, D.R. (1996) Temperature-sensitive mutations that arrest Arabidopsis shoot development, Development 122, 3799–3807.

    PubMed  CAS  Google Scholar 

  • Pitts, R.J., Cernac, A. and Estelle, M. (1998) Auxin and ethylene promote root hair elongation in Arabidopsis, Plant J 16, 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli, L., Carmel-Goren, L., Harevan, D., Gutfinger; T., Alvarez, J. Ganal, M., Zamir, D. and Lifschitz, E. (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFLI, Development 125, 1979–1989.

    CAS  Google Scholar 

  • Poethig, R.S. (1997) Leaf morphogenesis in flowering plants, Plant Cell 9, 1077–1087.

    Article  PubMed  CAS  Google Scholar 

  • Poethig, R.S. and Szymkowiak, E.J. (1995) Clonal analysis of leaf development in maize, Maydica 40, 67–76.

    Google Scholar 

  • Pouteau, S., Nicholls, D., Tooke, F., Coen, E. and Battey, N. (1997) The induction of flowering in Impatiens, Development 124, 3343–3351.

    PubMed  CAS  Google Scholar 

  • Prigge, M.J. and Wagner, D.R. (2001) The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development, Plant Cell 13, 1263–1279.

    PubMed  CAS  Google Scholar 

  • Przemek, G.K.H., Mattsson, J., Hardtke, C.S., Sung, Z.R. and Berleth, T. (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization, Planta 200, 229–237.

    Google Scholar 

  • Raemakers, C.J.J.M., Jacobsen, E. and Visser, R.G.F. (1995) Secondary somatic embryogenesis and applications in plant breeding, Euphytica 81, 93–107.

    Article  Google Scholar 

  • Ratcliffe, O.J., Amaya, I., Vincent, C.A., Rothstein, S., Carpenter, R., Coen, E.S. and Bradley, D.J. (1998) A common mechanism controls the life cycle and architecture of plants, Development 125, 1609–1615.

    PubMed  CAS  Google Scholar 

  • Ray, A. (1998) New paradigms in plant embryogenesis: maternal control comes in different flavors, Trends Plant Sci 3, 325–327.

    Article  Google Scholar 

  • Raz, V. and Ecker, J.R. (1999) Regulation of differential growth in the apical hook of Arabidopsis, Development 126, 3661–3668.

    PubMed  CAS  Google Scholar 

  • Reddy, A.S.N. and Day, I.S. (2000) The role of the cytoskeleton and a molecular motor in trichome morphogenesis, Trends Plant Sci 5, 503–505.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. and Chory, J. (1993) Mutations in the gene for the red far-red light receptor phytochrome-b alter cell elongation and physiological responses throughout Arabidopsis development, Plant Cell 5, 147–157.

    PubMed  CAS  Google Scholar 

  • Reinhardt, D., Wittwer, F., Mandel, T. and Kuhlemeier, C. (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem, Plant Cell 10, 1427–1437.

    PubMed  CAS  Google Scholar 

  • Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000) Auxin regulates the initiation and radial position of plant lateral organs, Plant Cell 12, 507–518.

    PubMed  CAS  Google Scholar 

  • Reiser, L., Sanchez-Baracaldo, P. and Hake, S. (2000) Knots in the family tree: evolutionary relationships and functions of knox homeobox genes, Plant Mol. Biol 42, 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Rerie, W.G., Feldmann, K.A. and Marks, M.D. (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development inArabidopsis, Genes Dev 8, 1388–1399.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, J.O., Eisses, J.F. and Sylvester, A.W. (1998) Balancing division and expansion during maize leaf morphogenesis: analysis of the mutant, warty-1, Development 125, 259–268.

    PubMed  CAS  Google Scholar 

  • Rosen, E., Chen, R. and Masson, P.H. (1999) Root gravitropism: a complex response to a simple stimulus?, Trends Plant Sci 4, 407–412.

    Article  PubMed  CAS  Google Scholar 

  • Rost, T.L. and Bryant, J.A. (1996) Root organization and gene expression patterns, J. Exp. Bot 47, 1613–1628.

    Article  CAS  Google Scholar 

  • Roth, R., Hall, L., Brutnell, T. and Langdale, J. (1996) bundle sheath defective-2, a mutation that disrupts the co-ordinated development of bundle sheath and mesophyll cells in the maize leaf, Plant Cell 8, 915–927.

    Google Scholar 

  • Russell, L., Lamer, V., Kurup, S., Bougourd, S. and Holdsworth, M. (2000) The Arabidopsis COMATOSE locus regulates germination potential, Development 127, 3759–3767.

    PubMed  CAS  Google Scholar 

  • Ryan, E., Grierson, C.S., Cavell, A., Steer, M. and Dolan, L. (1998) TIPI is required for both tip growth and non-tip growth in Arabidopsis, New Phytol 138, 49–58.

    Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfeldt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. and Scheres, B. (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root, Cell 99, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, T. (1991) Cell polarity and tissue patterning in plants, Development Supplement 1, 83–93.

    Google Scholar 

  • Sachs, T. (2000) Integrating cellular and organismic aspects of vascular differentiation, Plant Cell Physiol 41, 649–656.

    Article  PubMed  CAS  Google Scholar 

  • Sack, F.D. (1997) Plastids and gravitropic sensing, Planta 203, S63 - S68.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S. and Matsuoka, M. (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem, Genes Dev 15, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. (1999) Loss-of function mutations in the rice homeobox gene OSHI5 affect the architecture of intemodes resulting in dwarf plants, EMBO J 18, 992–1002.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, S., Watanabe, K., Goto, K., Liu, Y.G, Shibata, D., Kanaya, E., Morita, E.H. and Okada, K. (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains, Genes Dev 13, 1079–1088.

    CAS  Google Scholar 

  • Sawhney, V.K. and Greyson, R.I. (1984) On the initiation of the inflorescence and floral organs in tomato (Lycopersicon esculentum), Can. J. Bot 50, 1493–1495.

    Article  Google Scholar 

  • Scanlon, M.J. (2000) NARROW SHEATH] functions from two meristematic foci during founder-cell recruitment in maize leaf development, Development 127, 4573–4585.

    CAS  Google Scholar 

  • Scanlon, M.J. and Freeling, M. (1997) Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath, Dev. Biol 182, 52–66.

    Article  CAS  Google Scholar 

  • Scanlon, M.J. and Freeing, M. (1998) The narrow sheath leaf domain deletion: a genetic tool used to reveal developmental homologies among modified maize organs, Plant J 13, 547–561.

    CAS  Google Scholar 

  • Scanlon, M.J., Chen, K.D. and McKnight, C.I. (2000) The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development, Genetics 155, 1379–1389.

    PubMed  CAS  Google Scholar 

  • Scarpella, E., Rueb, S., Boot, K.J.M., Hoge, J.H.C. and Meijer, A.H. (2000) A role for the rice homeobox gene Oshoxl in provascular cell fate commitment, Development 127, 3655–3669.

    PubMed  CAS  Google Scholar 

  • Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C. and Weisbeek, P. (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials, Development 120, 2475–2487.

    CAS  Google Scholar 

  • Scheres, B., Di Laurenzio, L., Willemsen, V., Hauser, M.T., Janmaat, K., Weisbeek, P. and Benfey, P.N. (1995) Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis, Development 121, 53–62.

    CAS  Google Scholar 

  • Schiavone, F.M. and Cooke, T.J. (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors, Cell. Dill 21, 53–62.

    CAS  Google Scholar 

  • Schichnes, D., Schneeberger, R. and Freeling, M. (1997) Induction of leaves directly from leaves in the maize mutant Lax-midrib]-0, Dey Biol 186, 36–45.

    Article  CAS  Google Scholar 

  • Schiefelbein, J.W. (2000) Constructing a plant cell. The genetic control of root hair development, Plant Physiol 124, 1525–1531.

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein, J.W. and Sommerville, C. (1990) Genetic control of root hair development in Arabidopsis thaliana, Plant Cell 2, 235–243.

    CAS  Google Scholar 

  • Schiefelbein, J., Galway, M., Masucci, J. and Ford, S. (1993) Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana, Plant Physiol 103, 979–985.

    Article  CAS  Google Scholar 

  • Schindelman, G., Morikami, A., Jung, J., Baskin, T.I., Carpita, N.C., Derbyshire, P., McCann, M.C. and Benfey, P.N. (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis, Genes Dev 15, 1115–1127.

    CAS  Google Scholar 

  • Schmidt, E.D.L., Guzzo, F., Toonen, M.A.J. and de Vries, S.C. (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos, Development 124, 2049–2062.

    PubMed  CAS  Google Scholar 

  • Schmitz, G and Theres, K. (1999) Genetic control of branching in Arabidopsis and tomato, Curr. Opin. Plant Biol 2, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger, R., Tsiantis, M., Freeling, M. and Langdale, J.A. (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development, Development 125, 2857–2865.

    PubMed  CAS  Google Scholar 

  • Schneider, K., Wells, B., Dolan, L. and Roberts, K. (1997) Structural and genetic analysis of epidermal cell differentiation in Arabidopsis primary roots, Development 124, 1789–1798.

    PubMed  CAS  Google Scholar 

  • Schneider, K., Mathur, J., Boudonck, K., Wells, B., Dolan, L. and Roberts, K. (1998) The ROOT HAIRLESS I gene encodes a nuclear protein required for root hair initiation in Arabidopsis, Genes Dev 12, 2013–2021.

    Article  CAS  Google Scholar 

  • Schnittger, A., Jürgens, G and Hülskamp, M. (1998) Tissue layer and organ specificity of trichome formation are regulated by GLABRAI and TRIP TYCHON in Arabidopsis, Development 125, 2283–2289.

    CAS  Google Scholar 

  • Schnittger, A., Folkers, U., Schwab, B., Jürgens, G. and Hülskamp, M. (1999) Generation of a spacing pattern: the role of TRIPTYCHON in trichome patterning in Arabidopsis, Plant Cell 11, 1105–1116.

    CAS  Google Scholar 

  • Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J. and Jürgens, G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis, Genes Dev 14, 1471–1484.

    CAS  Google Scholar 

  • Schultz, E.A. and Haughn, G.W. (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabi dopsis, Plant Cell 3, 771–781.

    Google Scholar 

  • Schultz, E.A. and Haughn, G.W. (1993) Genetic analysis of the floral initiation process (FLIP) in Arabidopsis, Development 119, 745–765.

    CAS  Google Scholar 

  • Schultze, M. and Kondorosi, A. (1998) Regulation of symbiotic root nodule development, Annu. Rev. Genet 32, 33–57.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, K., Schmidt, T., Rossberg, M., Schmitz, G. and Theres, K. (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family, Proc. Natl. Acad. Sci. USA 96, 290–295.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, B.W., Yeung, E.C. and Meinke, D.W. (1994) Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis, Development 120, 3235–3245.

    CAS  Google Scholar 

  • Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C. and Machida, Y. (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves, Development 128, 1771–1783.

    PubMed  CAS  Google Scholar 

  • Sentoku, N., Sato, Y. and Matsuoka, M. (2000) Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants, Dev Biol 220, 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Sema, L. and Fenoll, C. (1997) Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers, Plant J 12, 747–75 5.

    Google Scholar 

  • Serna, L. and Fenoll, C. (2000) Stomatal development in Arabidopsis: how to make a functional pattern, Trends Plant Sci 5, 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs, Development 124, 4481–4491.

    CAS  Google Scholar 

  • Sessions, A., Weigel, D. and Yanofsky, M.F. (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia, Plant J 20, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Shevell, D.E., Leu, W-M., Gillmour, C.S., Xia, G., Feldmann, K.A. and Chua, N-H. (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7, Cell 77, 1051–1062.

    CAS  Google Scholar 

  • Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N. and Bowman, J.L. (1999) Members of the

    Google Scholar 

  • YABBY gene family specify abaxial cell fate in Arabidopsis, Development 126 4117–4128.

    Google Scholar 

  • Silverstone, A.L., Mak, P.Y.A., Martinez, C. and Sun, T-P. (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana, Genetics 146, 1087–1099.

    CAS  Google Scholar 

  • Sinha, N.R., Williams, R.E. and Hake, S. (1993) Overexpression of the maize homeobox gene, KNOTTED-I, causes a switch from determinate to indeterminate cell fates, Genes Dev 7, 787–795.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.G, Greene, B., Veit, B. and Hake, S. (1992) A dominant mutation in the maize homeobox gene, Knotted-1 causes its ectopic expression in leaf cells with altered fates, Development 116, 21–30.

    PubMed  CAS  Google Scholar 

  • Smith, L.G., Hake, S. and Sylvester, A.W. (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape, Development 122, 481–489.

    PubMed  CAS  Google Scholar 

  • Souer, E., Houwelingen, A.V., Kloos, D., Mol, J. and Koes, R. (1996) The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries, Cell 85, 159–170.

    Google Scholar 

  • Soutey M. and Lindsey, K. (2000) Polarity and signaling in plant embryogenesis, J. Exp. Bot 51, 971–983.

    Article  Google Scholar 

  • Spaink, H.P. (1996) Regulation of plant morphogenesis by lipochitin oligosaccharides, Crit. Rev. Plant Sci 15, 559–582.

    CAS  Google Scholar 

  • Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., Palme, K. and Jürgens, G. (1999) Co-ordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science 286, 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Stougaard, J. (2000) Regulators and regulation of legume root nodule development, Plant Physiol 124, 531–540.

    Article  PubMed  CAS  Google Scholar 

  • Stougaard, J. (2001) Genetics and genomics of root symbiosis, Curr. Opin. PlantBiol 4, 328–335. Sugiyama, M. (1999) Organogenesis in vitro, Curr. Opin. Plant Dol 2, 61–64.

    Google Scholar 

  • Szymanski, D.B., Klis, D.A., Larkin, J.C. and Marks, M.D. (1998a) cot/: a regulator of Arabidopsis trichome development, Genetics 149, 565–577.

    Google Scholar 

  • Szymanski, D.B., Jilk, R.A., Pollock, S.M. and Marks, M.D. (1998b) Control of GL2 expression in Arabidopsis leaves and trichomes, Development 125, 1161–1171.

    PubMed  CAS  Google Scholar 

  • Szymanski, D.B., Marks, M.D. and Wick, S.M. (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis, Plant Cell 11, 2331–2347.

    CAS  Google Scholar 

  • Szymanski, D.B., Lloyd, A.M. and Marks, M.D. (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis, Trends Plant Sci 5, 214–219.

    Article  CAS  Google Scholar 

  • Szymkowiak, E. (1996) Is the extent of the proliferation of component cell lineages critical during organ morphogenesis?, Sem. Cell. Dev. Biol 7, 849–856.

    Article  Google Scholar 

  • Takahashi, T., Gasch„ A., Nishizawa, N. and Chua, N.H. (1995) The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation, Genes Dev 9, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Talbert, P.B., Adler, H.T., Paris, D.W. and Cornai, L. (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana, Development 121, 2723–2735.

    CAS  Google Scholar 

  • Tamaoki, M., Nishimura, A., Aida, M., Tasaka, M. and Matsuoka, M. (1999) Transgenic tobacco over-expressing a homeobox gene shows a developmental interaction between leaf morphogenesis and phyllotaxy, Plant Cell Physiol 40, 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Onouchi, H., Kondo, M., Hara-Nishimura, I., Nishimura, M., Machida, C. and Machida, Y. (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants, Development 128, 4681–4689.

    PubMed  CAS  Google Scholar 

  • Tanimoto, M., Roberts, K. and Dolan, L. (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana, Plant J 8, 943–948.

    CAS  Google Scholar 

  • Tantikanjana, T., Yong, J.W.H., Letham, D.S., Griffith, M., Hussain, M., Ljung, K., Sandberg, G. and Sundaresan, V. (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene, Genes Dev 15, 1577–1588.

    Article  PubMed  CAS  Google Scholar 

  • Tasaka, M., Kato, T. and Fukaki, H. (1999) The endodermis and shoot gravitropism, Trends Plant Sci 4, 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, A., Bollman, K.M. and Poethig, R.S. (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana, Development 124, 645–654.

    CAS  Google Scholar 

  • Telfer, A. and Poethig, R.S. (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana, Development 125, 1889–1898.

    CAS  Google Scholar 

  • Tian, Q. and Reed, J.W. (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SITY2/IAA3 gene, Development 126, 711–721.

    PubMed  CAS  Google Scholar 

  • Timmermans, M.C.P., Schultes, N.P., Janovsky, J.P. and Nelson, T. (1998) leafbladelessl is required for dorsoventrality of lateral organs in maize, Development 125, 2813–2823.

    Google Scholar 

  • Timmermans, M.C.P., Hudson, A., Becraft, P.W. and Nelson, T. (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia, Science 284, 151–153.

    CAS  Google Scholar 

  • Topping, J.F., May, V.J., Muskett, P.R. and Lindsey, K. (1997) Mutations in the HYDRA] gene of Arabidopsis perturb cell shape and disrupt embryonic and seedling morphogenesis, Development 124, 4415–4424.

    PubMed  CAS  Google Scholar 

  • Topping, J.F. and Lindsey, K. (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis, Plant Cell 9, 1713–1725.

    CAS  Google Scholar 

  • Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F. and Komeda, Y. (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats, Plant Cell 8, 735–746.

    PubMed  CAS  Google Scholar 

  • Torres-Ruiz, R.A. and Jürgens, G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development, Development 120, 2967–2978.

    PubMed  CAS  Google Scholar 

  • Torres-Ruiz, R.A., Lohner, A. and Jürgens, G (1996) The GURKE gene is required for normal organization of the apical region of the Arabidopsis embryo, Plant J 10, 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Tran Thanh Van, M. (1973) In vitro control of de novo flower, bud, root and callus differentiation from excised epidermal tissues, Nature 246, 44–45.

    Google Scholar 

  • Tsiantis, M., Schneeberger, R., Golz, J.F., Freeling, M. and Langdale, J.A. (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants, Science 284, 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsuge, T, Tsutaya, H. and Uchimiya, H. (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh., Development 122, 1589–1600.

    PubMed  CAS  Google Scholar 

  • Tsukaya, H. (1997) Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea, Development 124, 1275–1280.

    CAS  Google Scholar 

  • Uggla, C., Moritz, T., Sandberg, G and Sundberg, B. (1996) Auxin as a positional signal in pattern formation in plants, Proc. Natl. Acad. Sci USA 93, 9282–9286.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, C.I. and Aloni, R. (2000) Vascularization is a general requirement for growth of plant and animal tumours, J. Exp. Bot 51, 1951–1960.

    Article  PubMed  CAS  Google Scholar 

  • van Den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. and Scheres, B. (1995) Cell fate in the Arabidopsis root meristem determined by directional signaling, Nature 378, 62–65.

    Article  PubMed  Google Scholar 

  • van Den Berg, C., Willemsen, V., Hendriks, G, Weisbeek, P. and Scheres, B. (1997) Short-range control of cell differentiation in the Arabidopsis root meristem, Nature 390, 287–289.

    Article  PubMed  CAS  Google Scholar 

  • van der Graaf, E., Dulk-Ras, A.D., Hooykaas, P.J.J. and Keller, B. (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana, Development 127, 4971–4980.

    Google Scholar 

  • van Houwelingen, A., Sauer, E., Spelt, K., Kloos, D., Mol, J. and Koes, R. (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida, Plant J 13, 39–50.

    Google Scholar 

  • Veit, B., Briggs, S.P., Schmidt, R.J., Yanofsky, M.F. and Hake, S. (1998) Regulation of leaf initiation by the terminal earl gene of maize, Nature 393, 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Vernon, D.M. and Meinke, D.W. (1994) Embryonic transformation of the suspensor in twin, a polyembryonie mutant of Arabidopsis, Dev. Biol 165, 566–573.

    Article  CAS  Google Scholar 

  • Villanueva, J.M., Broadhvest, J., Hauser, B.A., Meister, R.J., Schneitz, K. and Gasser, C.S. (1999)INNER NO OUTER regulates abaxial/adaxial patterning in Arabidopsis ovules, Genes Dev 13, 3160–3169.

    Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. (1991) The developmental gene Knotted-I is a member of a maize homeobox gene family, Nature 350, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Vroemen, C.W., Langeveld, S., Mayer, U., Ripper, G., Jürgens, G, Van Kammen, A. and De Vries, S.C. (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression, Plant Cell 8, 783–791.

    PubMed  CAS  Google Scholar 

  • Wada, T., Tachibana, T., Shimura, Y. and Okada, K. (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC, Science 277, 1113–1116.

    Article  PubMed  CAS  Google Scholar 

  • Waites, R. and Hudson, A. (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus, Development 121, 2143–2154.

    Google Scholar 

  • Wastes, R., Selvadurai, H.R., Oliver, I.R. and Hudson, A. (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum, Cell 93, 779–789.

    Article  Google Scholar 

  • Walker, J.D., Oppenheimer, D.G., Concienne, J. and Larkin, J.C. (2000) SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes, Development 127, 3931–3940.

    CAS  Google Scholar 

  • Walsh, J., Waters, C.A. and Freeling, M. (1997) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary, Genes Dev 11, 208–218.

    Google Scholar 

  • Wang, J., Letham, D.S., Cornish, E. and Stevenson, K.R. (1997) Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter I. Developmental features of the transgenic plants, Austr. J. Plant Physiol 24, 661–672.

    Article  CAS  Google Scholar 

  • Webb, M., Jouannic, S., Foreman, J., Linstead, P. and Dolan, L. (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR3 a katanin-p60 protein, Development 129, 123–131.

    PubMed  CAS  Google Scholar 

  • Wei, N. and Deng, X.W. (1992) COP9 — a new genetic locus involved in light-regulated development and gene expression in Arabidopsis, Plant Cell 4, 1507–1518.

    CAS  Google Scholar 

  • Wei, N., Chamovitz, D.A. and Deng, X.W. (1994) Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development, Cell 78, 117–124.

    CAS  Google Scholar 

  • Wei, N., Kwok, S.F., von Arnim, A.G., Lee, A., McNellis, T.W., Piekos, B. and Deng, X.W. (1994b) Arabidopsis COPS, COPIO, and COP11 genes are involved in repression of photomorphogenic development in darkness, Plant Cell 6, 629–643.

    CAS  Google Scholar 

  • Weigel, D. (1993) Patterning the Arabidopsis embryo, Curr. Biol3, 443–445.

    Google Scholar 

  • Weiler, E.W. and Schröder, J. (1987) Hormone genes and crown gall disease, Trends Biochem. Sci 12, 271–275.

    Article  CAS  Google Scholar 

  • White, D.W.R., Woodfield, D.R. and Caradus, J.R. (1998) Mortal: a mutant of white clover defective in nodal root development, Plant Physiol 116, 913–921.

    CAS  Google Scholar 

  • Willemsen, V., Wolkenfelt, H., deVrieze, G, Weisbeek, P. and Scheres, B. (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo, Development 125, 521–531.

    PubMed  CAS  Google Scholar 

  • Williams, E.G. and Maheswaran, G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group, Ann. Bot 57, 443–462.

    Google Scholar 

  • Wopereis, J., Pajuelo, E., Dazzo, F.B., Jiang, Q., Gresshoff, P.M., de Bruijn, F.J., Stougaard, J. and Szczyglowski, K. (2000) Short root mutants of Lotus japonicus with a dramatically altered symbiotic phenotype, Plant J2 3, 97–114.

    Google Scholar 

  • Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E. and Benfey, P.N. (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot, Development 127, 595–603.

    PubMed  CAS  Google Scholar 

  • Xie, Q., Frugis, G., Colgan, D. and Chua, N-H. (2000) Arabidopsis NACI transduces auxin signal downstream of TIR1 to promote lateral root development, Genes Dev 14, 3024–3036.

    CAS  Google Scholar 

  • Yadegari, R., de Paiva, G.R., Laux, T., Koltunow, A.M., Apuya, N., Zimmerman, J.L., Fischer, R.L., Harada, J.J. and Goldberg, R.B. (1994) Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos, Plant Cell 6, 1713–1729.

    PubMed  CAS  Google Scholar 

  • Yang, M. and Sack, F.D. (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis, Plant Cell 7, 2227–2239.

    CAS  Google Scholar 

  • Zhao, D., Yang, M., Solava, J. and Ma, H. (1999) The ASK] gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis, Dev. Genet 25, 209–223.

    Article  CAS  Google Scholar 

  • Zhong, R. and Ye, Z-H. (1999) IFLI, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein, Plant Cell 11, 2139–2152.

    CAS  Google Scholar 

  • Zimmerman, J.L. (1993) Somatic embryogenesis: a model for early development in higher plants, Plant Cell 5, 1411–1423.

    Google Scholar 

  • Zupan, J., Muth, T.R., Draper, O. and Zambryski, P. (2000) The transfer of DNA from Agrobacterlum tumefaclens into plants: a feast of fundamental insights, Plant J 23, 11–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Teixeira da Silva, J.A., Nhut, D.T. (2003). Control of Plant Organogenesis: Genetic and Biochemical Signals in Plant Organ form and Development. In: Nhut, D.T., Van Le, B., Tran Thanh Van, K., Thorpe, T. (eds) Thin Cell Layer Culture System: Regeneration and Transformation Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3522-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3522-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6259-8

  • Online ISBN: 978-94-017-3522-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics