Skip to main content

A preliminary linkage map of the tick, Ixodes scapularis

  • Chapter
Ticks and Tick-Borne Pathogens
  • 265 Accesses

Abstract

A linkage map of the Ixodes scapularis genome was constructed based upon segregation amongst 127 loci. These included 84 random amplified polymorphic DNA (RAPD) markers, 32 Sequence-Tagged RAPD (STAR) markers, 5 cDNAs, and 5 microsatellites in 232 Fl intercross progeny from a single, field-collected Pl female. A preliminary linkage map of 616 cM was generated across 14 linkage groups with one marker every 10.8 cM. Assuming a genome size of ~109 bp, the relationship of physical to genetic distance is ~300 kb/cM in the I. scapularis genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antolin, M.F., Bosio, C.F.. Cotton. J.. Sweeney, W., Strand, M.R. and Black, W.C.t. 1996. Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand conformation polymorphism analysis of random amplified polymorphic DNA markers. Genetics 143: 1727–1738.

    CAS  Google Scholar 

  • Black, W.C. and DuTeau. N.M. 1997. In: The Molecular Biology of Insect Disease Vectors: A Methods Manual, pp. 361–373. Chapman Hall, New York.

    Book  Google Scholar 

  • Bosio, C.F., Fulton, R.E., Salasek, M.L., Beaty. B.J. and Black. W.C.t. 2000. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687–698.

    CAS  Google Scholar 

  • Brown, S.E., Severson, D.W., Smith, L.A. and Knudson, D.L. 2001. Integration of the Aedes aegypti mosquito genetic linkage and physical maps. Genetics 157: 1299–1305.

    PubMed  CAS  Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S.E., Shin, H.S., Friedman, J.. Dracopoli, N.C. and Lander, E.S. 1992. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423–447.

    CAS  Google Scholar 

  • Dimopoulos, G., Zheng, L., Kumar, V., della Torre, A.. Kafatos, F.C. and Louis, C. 1996. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks. Genetics 143: 953–960.

    PubMed  CAS  Google Scholar 

  • Fagerberg, A.J., Fulton, R.E. and Black, W.C. 2001. Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, (codes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 10: 225–236.

    Article  CAS  Google Scholar 

  • Fulton, R.E., Salasek, M.L., DuTeau, N.M. and Black. W.C.t. 2001. SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics 158: 715–726.

    PubMed  CAS  Google Scholar 

  • Hayashi, K. 1991. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Meth. Appl. 1: 34–38.

    Article  CAS  Google Scholar 

  • Hiss, R.H., Norris, D.E., Dietrich, C.H.. Whitcomb, R.F., West, D.F., Bosio, C.F., Kambhampati, S., Piesman, J., Antolin, M.F. and Black. W.C.t. 1994. Molecular taxonomy using single-strand conformation polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes. Insect Mol. Biol. 3: 171–182.

    CAS  Google Scholar 

  • Hudson, T.J., Stein, L.D., Gerety, S.S., Ma. J.. Castle, A.B., Silva. J., Slonim. D.K., Baptista, R., Kruglyak, L., Xu, S.H. et al. 1995. An STS-based map of the human genome. Science 270: 1945–1954.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, G.J. and Page Jr., R.E. 1995. Linkage map of the honey bee. Apis mellifera. based on RAPD markers. Genetics 139: 1371–1382.

    PubMed  CAS  Google Scholar 

  • Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.

    Google Scholar 

  • Oliver Jr., J.H. 1977. Cytogenetics of mites and ticks. Annu. Rev. Entomol. 22: 407–429.

    Article  PubMed  Google Scholar 

  • Orita, M., Suzuki, Y., Sekiya, T. and Hayashi, K. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, M.J., Bantle, J.A., Guo, X. and Fargo, W.S. 1994. Genome size and organization in the ixodid tickAmblyomma americanum (L.). Insect Mol. Biol. 3: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Sonenshine, D.E. 1991. Biology of Ticks. Vol. I. New York.

    Google Scholar 

  • Spielman, A. 1976. Human babesiosis on Nantucket Island: transmission by nymphal Ixodes ticks. Am. J. Trop. Med. Hyg. 25: 784–787.

    PubMed  CAS  Google Scholar 

  • Spielman, A., Wilson, M.L., Levine, J.F. and Piesman, J. 1985. Ecology of (rodes damminiborne human babesiosis and Lyme disease. Annu. Rev. Entomol. 30: 439–460.

    Article  PubMed  CAS  Google Scholar 

  • Stam, P. and van Oojin, J.W. 1995. CPRO-DLO, Wageningen. The Netherlands.

    Google Scholar 

  • Telford III, S.R., Dawson, J.E., Katavolos, P., Warner, C.K., Kolbert, C.P. and Persing, D.H. 1996. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl. Acad. Sci. USA 93: 6209–6214.

    Article  PubMed  CAS  Google Scholar 

  • Ullmann. A.J., Piesman, J., Dolan, M.C. and Iv, W.C. 2003. A preliminary linkage map of the hard tick, Ixodes scapularis. Insect Mol. Biol. 12: 201–210.

    Google Scholar 

  • van Ooijen, J.W. 1994. DrawMap: a computer program for drawing genetic linkage maps. J. Hered. 85: 66.

    PubMed  Google Scholar 

  • Vidal-Puig, A. and Moller, D.E. 1994. Comparative sensitivity of alternative single-strand conformation polymorphism (SSCP) methods. Biotechniques 17: 490–492, 494, 496.

    Google Scholar 

  • Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Yasukochi, Y. 1998. A dense genetic map of the silkworm. Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics 150: 1513–1525.

    PubMed  CAS  Google Scholar 

  • Zheng, L., Benedict. M.Q., Cornel. A.J., Collins, F.H. and Kafatos, F.C. 1996. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143: 941–952.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy J. Ullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ullmann, A.J., Piesman, J., Dolan, M.C., Black, W.C. (2003). A preliminary linkage map of the tick, Ixodes scapularis . In: Jongejan, F., Kaufman, W.R. (eds) Ticks and Tick-Borne Pathogens. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3526-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3526-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6355-7

  • Online ISBN: 978-94-017-3526-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics