Skip to main content

Phonon-Polaritons in Nonlinear Dielectric Medium

  • Chapter
  • First Online:
Contemporary Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

  • 1421 Accesses

Abstract

We discuss the properties of polaritons and obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third order Kerr-type nonlinearity. We investigate the dependence of number of the polariton spectrum branches on the intensity of electromagnetic field and demonstrate that the appearance of new branches located in the polariton spectrum gap is caused by the dispersion of the third order dielectric susceptibility at the intensive electromagnetic field in the medium. The modulation instability of new spectrum branch waves leads to the appearance of the spatial solitons or cnoidal waves. Also we theoretically investigate the properties of scalar and vector phonon-polariton spatial solitons and cnoidal waves propagating in boundless dielectric medium. These new nonlinear waves one can use for designing the optical devices such as the optical converter, controllable filter, all-optical logic gates, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.B. Tolpygo, Physical properties of the salt lattice constructed from deforming ions. J. Exp. Theor. Phys. (USSR) 20(6), 497–509 (1950). (in Russian)

    Google Scholar 

  2. Huang K., On the interaction between the radiation field and ionic crystals. Proc. Roy. Soc. A, 208, 352–365 (1951)

    Google Scholar 

  3. S.I. Pekar, Theory of electromagnetic wave in crystal, in which exitons appear. J. Exp. Theor. Phys. (USSR) 33(4), 1022–1036 (1957). (in Russian)

    Google Scholar 

  4. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112(5), 1555–1567 (1958)

    Article  MATH  ADS  Google Scholar 

  5. V.M. Agranovich, V.L. Ginzburg, Crystal optics with allowance for spatial dispersion and exciton theory. Sov. Phys. Uspekhi 5, 323–346 (1962)

    Article  ADS  Google Scholar 

  6. V.M. Agranovich, V.L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer, Berlin, 1984)

    Book  Google Scholar 

  7. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963)

    Google Scholar 

  8. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965)

    Google Scholar 

  9. R.H. Pantell, H.E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969)

    Google Scholar 

  10. V.V. Obukhovsky, V.L. Strizhevsky, Raman scattering of light by polaritons. Ukr. Phys. J. 14(9), 1463–1469 (1969). (in Russian)

    Google Scholar 

  11. A.S. Davydov, Solid State Physics (Nauka, Moscow, 1976). (in Russian)

    Google Scholar 

  12. S.B. Borisov, I.L. Lyubchanskii, V.L. Sobolev, Polaritons in magnetoelectric crystals. Phys. Sol. (USSR) 31(5), 58–63 (1989)

    Google Scholar 

  13. M.I. Kaganov, N.B. Pustyl’nik, T. I. Shalaeva, Magnons, Magnetic polaritons, and magnetostatic waves, Uspekhi Fizicheskikh Nauk, 167(2), 191–237 (1997). (in Russian)

    Google Scholar 

  14. V.M. Agranovich, D.L. Mills (eds.), Surface Polaritons (North-Holland, Amsterdam, 1982)

    Google Scholar 

  15. A.D. Boardman (ed.), Electromagnetic Surface Modes (Wiley, New York, 1982)

    Google Scholar 

  16. D.N. Klyshko, Quantum and Nonlinear Optics (Nauka, Moscow, 1980). (in Russian)

    Google Scholar 

  17. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  18. A.P. Sukhorukov, Nonlinear Wave Interaction in Optics and Radiophysics (Nauka, Moscow, 1988). (in Russian)

    Google Scholar 

  19. S.A. Darmanyan, A.M. Kamchatnov, M. Neviere, Polariton Effect in Nonlinear Pulse Propagation. J. Exp. Theor. Phys. 96(5), 876–884 (2003)

    Article  ADS  Google Scholar 

  20. I.V. Dzedolik, Polaritons in Optical Fibers and Dielectric Resonators (Simferopol, DIP, 2007). (in Russian)

    Google Scholar 

  21. E.L. Albuquerque, M.G. Cottam, Polaritons in Periodic and Quasiperiodic Structures (Elsevier, Amsterdam, 2004)

    Google Scholar 

  22. V.K. Miloslavsky, Nonlinear Optics, (Kharkov, V.N. Karazin Kharkov Nat. Univ., 2008). (in Russian)

    Google Scholar 

  23. I.V. Dzedolik, One-dimensional controllable photonic crystal. J. Opt. Soc. Am. B 24(10), 2741–2745 (2007)

    Article  ADS  Google Scholar 

  24. I.V. Dzedolik, S.N. Lapayeva, A.F. Rubass, All-optical logic gates based on nonlinear dielectric film. Ukr. J. Phys. Opt. 9(3), 187–196 (2007)

    Article  Google Scholar 

  25. G. Campbell, M. Hosseini, B.M. Sparkes, P.K. Lam, B.C. Buchler, Time- and frequency-domain polariton interference. New J. Phys. 14, 033022 (2012)

    Article  ADS  Google Scholar 

  26. I.V. Dzedolik, O. Karakchieva, Control of polariton spectrum in bigyrotropic medium. Appl. Opt. 52(25), 6112–6118 (2013)

    Article  ADS  Google Scholar 

  27. H. Inoue, K. Katayma, Q. Shen, T. Toyoda, K. Nelson, Terahertz reflection response measurement using a phonon polariton wave. J. Appl. Phys. 105, 054902 (2009)

    Article  ADS  Google Scholar 

  28. Z. Qi, Z.-Q. Shen, C.-P. Huang, S.-N. Zhu, Y.-Y. Zhu, Phonon polaritons in a nonaxial aligned piezoelectric superlattice. J. Appl. Phys. 105, 074102 (2009)

    Article  ADS  Google Scholar 

  29. I.V. Dzedolik, Period variation of polariton waves in optical fiber. J. Opt. A: Pure Appl. Opt. 11, 094012 (2009)

    Article  ADS  Google Scholar 

  30. M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. Andre, B. Deveaud-Pledran, Dang L-S (2010) Exciton-polariton Bose-Einstein condensation: advances and issues. Int. J. Nanotechnology 7((4/5/6/7/8)), 668–685 (2010)

    Article  ADS  Google Scholar 

  31. E.A. Ostrovskaya, J. Abdullaev, A.S. Desyatnikov, M.D. Fraser, YuS Kivshar, Dissipative solitons and vortices in polariton Bose-Einstein condensates. Phys. Rev. A 86, 013636 (2012)

    Article  ADS  Google Scholar 

  32. I.V. Shadrivov, A.A. Sukhorukov, YuS Kivshar, A.A. Zharov, A.D. Boardman, P. Egan, Nonlinear surface waves in left-handed materials. Phys. Rev. E 69, 016617 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  33. K.L. Tsakmakidis, A.D. Boardman, O. Hess, Trapped rainbow storage of light in metamaterials. Nature 450(15), 06285 (2007). (397–401)

    Google Scholar 

  34. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

    Article  ADS  Google Scholar 

  35. H. Fan, R. Buckley, P. Berini, Passive long-range surface plasmon-polariton devices in Cytop. Appl. Opt. 51(10), 1459–1467 (2012)

    Article  ADS  Google Scholar 

  36. M.S. Vasconcelos, E.L. Albuquerque, U.L. Fulco, C.A.A. Araujo, Phonon polaritons in metamaterial photonic crystals at terahertz frequency range. Proc. SPIE 8423, 84232H (2012)

    Article  ADS  Google Scholar 

  37. I.V. Dzedolik, O. Karakchieva, Polariton spectrum in nonlinear dielectric medium. Appl. Opt. 52(13), 3073–3078 (2013)

    Article  ADS  Google Scholar 

  38. S. Santran, L. Cathoni, T. Cardinal, E. Farginc, G. Le Flem, C. Rouyera, L. Sarger, Precise and absolute measurements of the complex third-order optical susceptibility. Proc. SPIE 4106, 349 (2000)

    Article  ADS  Google Scholar 

  39. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Special 30th anniversary feature: sensitive measurement of optical nonlinearities using a single beam. IEEE LEOS Newsletter 21, 17–26 (2007)

    Google Scholar 

  40. A. Scott, Active and nonlinear wave propagation in electronics (Wiley, New York, 1970)

    Google Scholar 

  41. YuS Kivshar, G.P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  42. I.V. Dzedolik, O. Karakchieva, Nonlinear vector and scalar polariton waves in dielectric medium. J. Opt. Soc. Am. B 30(4), 843–850 (2013)

    Article  ADS  Google Scholar 

  43. V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. J. Exp. Theor. Phys. Let. (USSR) 3(11), 471–476 (1966)

    Google Scholar 

  44. A. Sukhinin, A.B. Aceves, Optical UV filament and vortex dynamics. J. Opt. 15(4), 044010 (2013)

    Article  ADS  Google Scholar 

  45. S.V. Chekalin, V.P. Kandidov, From self-focusing light beams to femtosecond laser pulse filamentation. Phys. Uspekhi 56(2), 133–152 (2013)

    Article  ADS  Google Scholar 

  46. G.A. Korn, T.M. Korn, Mathematical Handbook (McGraw-Hill Book Company, New York, 1968)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Anton S. Desyatnikov for fruitful discussions of the work, and Tatiana Nurieva for the help of paper preparing, and Olga Karakchieva for the help of plotting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Dzedolik .

Editor information

Editors and Affiliations

Appendices

Appendix A

The set of (1.18) can be simplified for linearly polarized wave by turning of the coordinate axes at the angle \(\pi /4\),

$$- \frac{\partial }{\partial y}\left( {\frac{\partial e}{\partial x} - \frac{\partial e}{\partial y}} \right) + \left( {\alpha_{1} + \alpha_{3} \left| e \right|^{2} } \right)\,e = 0,\quad \frac{\partial }{\partial x}\left( {\frac{\partial e}{\partial x} - \frac{\partial e}{\partial y}} \right) + \left( {\alpha_{1} + \alpha_{3} \left| e \right|^{2} } \right)\,e = 0,$$

where \(e = \sqrt 2 e_{x} = \sqrt 2 e_{y}\). Introducing the “light-cone” coordinates \(\xi = \left( {x + y} \right)/2\) and \(\eta = \left( {x - y} \right)/2\) we obtain two uncoupled scalar equations

$$\frac{{\partial^{2} e}}{{\partial \eta^{2} }} + 2\left( {\alpha_{1} + \alpha_{3} \left| e \right|^{2} } \right)\,e = 0,\quad \quad \frac{{\partial^{2} e}}{\partial \xi \eta } = 0.$$

The first equation of equations has the cnoidal or soliton solutions \(e\left( \eta \right)\), the second equation has the solution \(e\left( \eta \right) = e\left( {x,y} \right)\) describing a one-dimensional wave varying in a single direction \(\eta\).

Appendix B

The first integral of the equation \(d^{2} e/dx^{2} - \bar{\alpha }_{1} e + \alpha_{3} e^{3} = 0\) looks like \(\left( {de/dx} \right)^{2} = \bar{\alpha }_{1} e^{2} - \alpha_{3} e^{4} /2 + C\), where \(C\) is an integration constant.

The boundary conditions for soliton \(e \to 0\), \(de/dx \to 0\) at \(\left| x \right| \to \infty\) allow to define the integration constant as \(C = 0\) [41]. The boundary conditions \(e\left( 0 \right) = const\) and \(de\left( 0 \right)/dx = 0\) for soliton centre \(x = 0\) allow to define the phase shift as \(q = \left[ {\alpha_{3} e^{2} \left( 0 \right)/2 + c^{ - 2} \omega^{2} \left( {1 + 4\pi \chi_{1} } \right) - k^{2} } \right]/2k\) in case without perturbation. The second integral of the equations for bright soliton looks like \(\sqrt {\alpha_{3} /2} x = \int {e^{ - 1} \left( {\,\alpha '\, - \,e^{2} } \right)}^{ - 1/2} de\), where \(\alpha^{\prime} = 2\bar{\alpha }_{1} \alpha_{3}^{ - 1}\), and after its integration we obtain \(e\left( x \right) = \left| {\sqrt {\alpha '} } \right|sch\left( {sch^{ - 1} \left| {e\left( 0 \right)/\sqrt {\alpha '} } \right| - \sqrt {\bar{\alpha }_{1} } x} \right)\).

If we choose the boundary conditions as \(e = const\), \(de/dx = 0\) at \(\left| x \right| \to \infty\), i.e. the integration constant is not equal zero \(C = \alpha_{3} e_{\infty }^{4} /2 - \bar{\alpha }_{1} e_{\infty }^{2}\), we obtain the cnoidal wave . In this case the phase shift at the boundary conditions \(e\left( 0 \right) = const\) and \(de\left( 0 \right)/dx = 0\) is equal \(q = \left[ {\alpha_{3} e^{2} \left( 0 \right)/2 + c^{ - 2} \omega^{2} \left( {1 + 4\pi \chi_{1} } \right) - k^{2} - Ce^{ - 2} \left( 0 \right)} \right]/2k\). Then the second integral of the equations for cnoidal wave looks like \(\sqrt {\alpha_{3} /2} x = \int\nolimits_{0}^{e} {\left( {\,C^{\prime} + \alpha^{\prime}\,e^{2} - \,e^{4} } \right)^{ - 1/2} de}\), where \(C^{\prime} = 2C\alpha_{3}^{ - 1}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dzedolik, I.V. (2016). Phonon-Polaritons in Nonlinear Dielectric Medium. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics