Skip to main content

Growth Forms and Life Histories in Green Algae

  • Chapter
The Algae World

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 26))

Abstract

Green algae are predominantly diverse in growth forms. Plant body in green algae shows evolutionary progression from simple to more complex types of construction. It is fascinating to trace the increasing complexity in the algal structure through certain members of the Chlorophyceae, beginning from simple unicellular motile forms (Chlamydomonas) through multicellular flagellated colonies (Volvox), unicellular non-motile forms (Chlorella), filamentous forms (Ulothrix, Oedogonium, Spirogyra), heterotrichous forms (Coleochate), siphonous forms (Acetabularia), well developed parenchymatous thalli (Ulva) to a thallus which bear leaf and stem like structures and resembles land plants (Chara). The perpetuation of these algae passes through a cycle of events involving more than one phase for a species and every phase must be able to survive or reproduce for the species to persist. In its life cycle, an alga usually cycles through different ploidy stages and this cycle is characterized by the occurrence of sporophyte and gametophyte. Sporophyte is diploid and is concerned with the production of haploid meiospores after meiosis, whereas gametophyte is haploid and is responsible for sexual reproduction. Gametophyte produces the haploid gametes. Sporophyte and gametophyte usually follow each other in a single life cycle and this progression is called alternation of generations. These stages face varying environmental conditions and are closely linked to each other. Study of these life cycles is immensely important because of their usefulness for both ecological and evolutionary studies. Most of the unicellular and filamentous forms of Chlorophyceae show haplontic life cycle (e.g. Chlamydomonas, Volvox, Chlorella, Oedogonium, Ulothrix, Spirogyra, Coleochate and Chara), some members show diplontic life cycle (e.g. Acetabularia, Codium) while a few others show isomorphic alternation of generations between haploid and diploid plants (e.g. Ulva) called diplohaplontic life cycle. The aim of this chapter is to present a systematic framework of the information on structure, ultrastructure, reproduction and life histories of selected taxa in Chlorophyceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen NS (1974) Endoplasmic filaments generate the motive force for rotational streaming in Nitella. J Cell Biol 63:270–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bold HC, Wynne MJ (1978) Introduction to the algae: structure and reproduction. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Bold HC, Alexopoulos CJ, Delevoryas T (1987) Morphology of plants and fungi, 5th edn. HarperCollins Publishers, New York

    Google Scholar 

  • Braun M, Wasteneys GO (1998) Distribution and dynamics of the cytoskeleton in gravisensing protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205:39–50

    Article  CAS  PubMed  Google Scholar 

  • Bullock KW (1978) Observations on hypnospores in Ulothrix zonata (Chlorophyceae). Can J Bot 56:1660–1664

    Article  Google Scholar 

  • Cavalier-Smith T (1976) Electron microscopy of zygospore formation in Chlamydomonas reinhardtii. Protoplasma 87:297–315

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (1979) Sexuality in colonial green flagellates. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa. Academic, New York, pp 307–340

    Google Scholar 

  • Cook ME, Graham LE, Lavin CA (1998) Cytokinesis and nodal anatomy in the charophycean green alga Chara zeylanica. Protoplasma 203:65–74

    Article  Google Scholar 

  • Frederick SE, Gruber PJ, Tolbert NE (1973) The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants. Plant Physiol 52:318–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fritsch FE (1935) The structure and reproduction of algae, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Gilles R, Bittner C, Jaenicke L (1981) Site and time of formation of the sex-inducing glycoprotein in Volvox carteri. FEBS Lett 124:57–61

    Article  CAS  Google Scholar 

  • Goodenough UW, Thorner J (1983) Sexual differentiation and mating strategies in the yeast Saccharomyces and in the green alga Chlamydomonas. In: Yamada KM (ed) Cell interactions and development: molecular mechanisms. John Wiley, New York, pp 29–75

    Google Scholar 

  • Graham LE, McBride GE (1979) The occurrence and phylogenetic significance of a multilayered structure in Coleochaete spermatozoids. Am J Bot 66:887–894

    Article  Google Scholar 

  • Graham LE, Wedemayer GJ (1984) Spermatogenesis in Coleochaete pulvinata (Charophyceae) – sperm maturation. J Phycol 20:302–309

    Article  Google Scholar 

  • Graham LE, Wilcox LW (1983) The occurrence and phylogenetic significance of putative placental transfer cells in the green alga Coleochaete. Am J Bot 70:113–120

    Article  Google Scholar 

  • Grant MC (1990) Phylum Chlorophyta. Class Charophyceae. Order Charales. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 641–648

    Google Scholar 

  • Hill GJC, Machlis L (1968) An ultrastructural study of vegetative cell division in Oedogonium borisianum. J Phycol 4:261–271

    Article  Google Scholar 

  • Hoffman LR (1960) Chemotaxis of Oedogonium sperms. Southwest Nat 5:111–116

    Article  Google Scholar 

  • Hoffman LR, Manton I (1962) Observations on the fine structure of the zoospore of Oedogonium cardiacum with special reference to the flagellar apparatus. J Exp Bot 13:443–449

    Article  Google Scholar 

  • Hoops HJ, Nishii I, Kirk DL (2006) Cytoplasmic bridges in Volvox and its relatives. In: Baluska F et al. (eds) Cell–cell channels. Landes Bio-sci, Georgetown, pp 65–84

    Chapter  Google Scholar 

  • Jaenicke I, Gilles R (1985) Germ-cell differentiation in Volvox carteri. Differentiation 29:199–206

    Article  Google Scholar 

  • Kirk DL, Birchem R, King N (1986) The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci 80:207–231

    CAS  PubMed  Google Scholar 

  • Kirk MM, Stark K, Miller SM, Müller W, Taillon BE, Gruber H, Schmitt R, Kirk DL (1999) regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development 126:639–647

    CAS  PubMed  Google Scholar 

  • Koop HU (1979) The life cycle of Acetabularia (Dasycladales, Chlorophyceae): a compilation of evidence for meiosis in the primary nucleus. Protoplasma 100:353–366

    Article  Google Scholar 

  • Lee RE (2008) Phycology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lewin RA, Lee KW (1985) Autotomy of algal flagella; electron microscope studies of Chlamydomonas (Chlorophyceae) and Tetraselmis (Prasinophyceae). Phycologia 24:311–316

    Article  Google Scholar 

  • Marchant HJ, Pickett-Heaps JD (1973) Mitosis and cytokinesis in Coleochaete scutata. J Phycol 9:461–471

    Google Scholar 

  • Palevitz BA, Hepler PK (1975) Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella. Microfilament-chloroplast association. J Cell Biol 65:29–38

    Article  CAS  PubMed  Google Scholar 

  • Pickett-Heaps JD (1975) Green algae: structure, reproduction and evolution in selected genera, 1st edn. Sinauer Associates Publishers, Sunderland

    Google Scholar 

  • Pickett-Heaps JD, Fowke LC (1970) Cell division in Oedogonium III. Golgi bodies, wall structure and wall formation in O. cardiacum. Aust J Biol Sci 23:93–113

    Google Scholar 

  • Pommerville JC, Kochert GD (1981) Changes in somatic cell structure during senescence of Volvox carteri. Eur J Cell Biol 24:236–243

    CAS  PubMed  Google Scholar 

  • Pommerville J, Kochert G (1982) Effects of senescence on somatic cell physiology in the green alga Volvox carteri. Exp Cell Res 140:39–45

    Article  CAS  PubMed  Google Scholar 

  • Powers JH (1908) Further studies in Volvox, with description of three new species. Trans Am Microsc Soc 28:141–175

    Article  Google Scholar 

  • Prescott GW (1951) Algae of the western great lakes area. WM.C Brown Publishers, Dubuque, p 977

    Google Scholar 

  • Roberts KR, Gurney-Smith M, Hills GL (1972) Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardtii. I. Ultrastructure and preliminary chemical analysis. J Ultrastruct Res 40:599–613

    Article  CAS  PubMed  Google Scholar 

  • Schmitt R, Fabry S, Kirk DL (1992) In search of molecular origins of cellular differentiation in Volvox and its relatives. Int Rev Cytol 139:189–265

    Article  CAS  PubMed  Google Scholar 

  • Simons J, Beem AP, Vries PJR (1984) Induction of conjugation and spore formation in species of Spirogyra, Chlorophyceae, Zygnematales. Acta Bot Neerl 33:323–334

    Article  Google Scholar 

  • Snell WJ (1985) Cell-cell interactions in Chlamydomonas. Annu Rev Plant Physiol 36:287–315

    Article  CAS  Google Scholar 

  • Starr RC (1969) Structure, reproduction and differentiation in Volvox carteri f. Nagariensis Iyengar, strains HK9 and HK10. Arch Protistenkd 111:204–222

    Google Scholar 

  • Starr RC (1970) Control of differentiation in Volvox. Symp Soc Dev Biol 29:59–100

    CAS  PubMed  Google Scholar 

  • Starr RC (1980) Colonial chlorophytes. In: Cox ER (ed) Phytoflagellates. Elsevier, Amsterdam, pp 147–163

    Google Scholar 

  • Starr RC, Jaenicke L (1974) Purification and characterization of the hormone initiating sexual morphogenesis in Volvox carteri f. nagariensis Iyengar. Proc Natl Acad Sci U S A 71:1050–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sumper M, Hallmann A (1998) Biochemistry of the extracellular matrix of Volvox. Int Rev Cytol 180:51–85

    Article  CAS  PubMed  Google Scholar 

  • Tiffany LH (1957) The Oedogoniaceae III. Bot Rev 23:47–63

    Article  Google Scholar 

  • Van Den Ende H (1985) Sexual agglutination in Chlamydomonads. Adv Microb Physiol 26:89–123

    Article  PubMed  Google Scholar 

  • Wiese L (1984) Mating systems in unicellular algae. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions. Springer, Berlin, pp 238–260

    Chapter  Google Scholar 

  • Williamson RE (1979) Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina. Eur J Cell Biol 20:177–183

    CAS  PubMed  Google Scholar 

  • Williamson RE (1992) Cytoplasmic streaming in characean algae: mechanism, regulation by Ca 2+, and organization. In: Melkonian M (ed) Algal cell motility. Chapman & Hall, London, pp 73–98

    Chapter  Google Scholar 

  • Yamashita T, Sasaki K (1979) Conditions for the induction of the mating process and changes in contents of carbohydrates and nitrogen compounds during the mating process of Spirogyra. J Fac Sci Hokkaido Univ Ser Bot 11:279–287

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arora, M., Sahoo, D. (2015). Growth Forms and Life Histories in Green Algae. In: Sahoo, D., Seckbach, J. (eds) The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7321-8_5

Download citation

Publish with us

Policies and ethics