Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 19))

  • 1554 Accesses

Abstract

In this chapter, the procedure proposed in EN1990 is adopted and extended to the case of EBR FRP systems, with the aim of attaining a uniform reliability level among all equations developed in this technical report. This approach will allow comparing experimental results and theoretical predictions in a consistent manner, and also identifying possible sources of error in the formulations. Any capacity model should be developed on the basis of theoretical considerations and subsequently fine-tuned through a regression analysis based on tests results. The validity of the model should then be checked by means of a statistical interpretation of all available test data. The formulation should include in the theoretical model a new variable that represents the model error. This variable is assumed to be normally distributed whit unit mean and standard deviation to be evaluated from comparison with experimental results. Once the statistical parameters of the model error are known, it is possible to define the statistical parameters of the capacity model and to evaluate its characteristic value, which is the aim for application in design. Some applications are shown to prove the feasibility of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACI Committee 318. (2005). Building Code Requirements for Structural Concrete (ACI 318–05) and Commentary (318R-05) (p. 430). Farmington Hills: American Concrete Institute.

    Google Scholar 

  • ACI Committee 440.2 R-08. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures.

    Google Scholar 

  • Aiello, M. A., & Leone, M. (2005). Experimental bond analysis of concrete-FRP (fiber reinforced polymer) reinforced. Proceedings of fib Symposium Keep Concrete Attractive”, Budapest, Hungary.

    Google Scholar 

  • Ang, A. H. S., & Tang, W. H. (1975). Probability concepts in engineering planning and decision. Basic principles (Vol. 1). New York: Wiley.

    Google Scholar 

  • Arduini, M., & Nanni, A. (1997). Behavior of precracked RC beams strengthened with carbon FRP Sheets. Journal of Composites for Construction, 1(2), 63–70.

    Article  Google Scholar 

  • Beber, A. J. (2003). Comportamento Estrutural de Vigas de Concreto Armado Reforçadas com Compósitos de Fibra de Carbono. UFRGS, Porto Alegre: Tese de Doutorado. (in Portuguese).

    Google Scholar 

  • Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., & Pecce ,M. (2011a). Bond tests on concrete elements strengthened with EBR and NSM FRP systems, Proceedings Of FRP RCS 10, April 2–4, 2011, Tampa, Florida, USA.

    Google Scholar 

  • Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., & Pecce, M. (2011b). Design by testing of debonding load in RC element strengthened with EBR FRP materials, Proceedings Of FRP RCS 10, April 2–4, 2011, Tampa, Florida, USA.

    Google Scholar 

  • Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., Pecce, M., & Manfredi, G. (2011). Bond efficiency of EBR and NSM FRP systems for strengthening concrete members, Journal of Composites for Construction, (Vol. 15, Issue 5, pp 757–772), DOI: 10.1061/(ASCE)CC.1943-5614.0000204.

    Google Scholar 

  • Bilotta, A., Di Ludovico, M., & Nigro, E. (2009a). Influence of effective bond length on FRP-concrete debonding under monotonic and cyclic actions, Proceedings of the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures Sydney, Australia 13–15 July 2009.

    Google Scholar 

  • Bilotta, A., Ceroni, F., Di Ludovico, M., Fava, G., Ferracuti, B., Mazzotti, C., Nigro, E., Olivito, R., Pecce, M., Poggi, C. & Savoia, M. (2009b). Experimental round robin test on FRP concrete bonding, Proceedings of FRP RCS9, 13–15 July, Sydney, Australia, CD ROM.

    Google Scholar 

  • Brosens, K., & Van Gemert, D. (1997). Anchoring stresses between concrete and carbon fibre reinforced laminates, Proceedings of the 3rd International Symposium on Non-metallic (FRP) Reinforced for Concrete Structures, (Vol. 1, October 1997, pp. 271–278).

    Google Scholar 

  • Burdekin, F. M. (2007). General principles of the use of safety factors in design and assessment. Engineering Failure Analysis, 14(3), 420–433.

    Article  Google Scholar 

  • CEB-FIP (1993). Model Code 1990, Final Draft, Bulletin d’Information n. 213/214.

    Google Scholar 

  • Ceroni, F., & Pecce, M. (2010). Evaluation of bond strength and anchorage systems in concrete elements strengthened with CFRP sheets, Journal of Composites in Construction, ASCE. (In press)

    Google Scholar 

  • Chajes, M. J., Finch, W. W., Januszka, T. F., & Thomson, T. A. (1996). Bond and force transfer of composite material plates bonded to concrete, ACI Structural Journal, 93(2), 208–217.

    Google Scholar 

  • Chen, J. F., & Teng, J. G. (2001). Anchorage strength models for FRP and Steel Plates bonded to concrete. ASCE Journal of Structural Engineering, 127(7), 784–791.

    Article  Google Scholar 

  • CNR-DT 200. (2004). Guide for the design and construction of externally bonded FRP systems for strengthening, Council of National Research, Rome, http://www.cnr.it/documenti/norme/IstruzioniCNR_DT203_2006_eng.pdf.

  • Di Ludovico, M., Piscitelli, F., Prota, A., Lavorgna, M., Manfredi, G., & Mensitieri, G. (2009). CFRP Laminates Behavior at Elevated Temperature. In: Proceedings of the 7th International Conference on Composite Science and Technology, January 20–22, 2009, Sharjah, United Arab Emirates.

    Google Scholar 

  • EN-1992, EC2. (2005). Design of concrete structures.

    Google Scholar 

  • EN-1993, EC3. (2005). Design of steel structures.

    Google Scholar 

  • EN-1994, EC4. (2004). Design of composite steel and concrete structures.

    Google Scholar 

  • EN-1990, EC0. (1990). Basis of structural design.

    Google Scholar 

  • European Commitee for Standardization. (2002). EN 1990-Eurocode: Basic of Structural Design.

    Google Scholar 

  • European Commitee for Standardization. (2004). EN 1992–1-1-Eurocode 2: Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings, ENV 1992-1-1.

    Google Scholar 

  • European Commitee for Standardization. (2005). EN 1998–3-Eurocode 8: Design of structures for earthquake resistance. Part 3: Assessment and retrofitting of buildings.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2010). A simplified design formula for intermediate debonding failure in RC beams externally strengthened by FRP, 3rd fib International Congress, May 29—June 2, 2010, Paper ID: 672, 8, Washington, USA.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2004). Debonding in FRP-strengthened RC beams: comparison between code provisions, Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering, Paper 074, Adelaide (Australia), December 8–10, 2004.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2008a). Direct versus Indirect Method for Identifying FRP-to-Concrete Interface Relationships. Journal of Composites for Construction, 13(3), 226–233.

    Article  Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2008). Formulation and Validation of a Theoretical Model for Intermediate Debonding in FRP Strengthened RC Beams, Composites Part B 2008, (39(4), pp. 645–655).

    Google Scholar 

  • Faella, C., Martinelli, E., Nigro, E., Salerno, N., Sabatino, M., & Mantegazza G. (2002). Aderenza tra calcestruzzo e fogli di FRP utilizzati come placcaggio di elementi inflessi.:Parte prima: risultati sperimentali, Proceedings of the XIV C.T.E. Conference, Mantova, Italy, Nov. 2002, (in Italian).

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2008). Some remarks on the parameters affecting debonding in FRP strengthened RC beams, Proceedings of CICE 2008, Zurich (CH), 22–24 July, Paper E 145.

    Google Scholar 

  • Ferracuti, B., Martinelli, E., Nigro, E., & Savoia, M. (2007). Fracture Energy and Design Rules against FRP-Concrete Debonding, Proceedings of 8th FRPRCS Conference, 16–18 July 2007, Patras (GR).

    Google Scholar 

  • fib. (2001). Externally Bonded FRP Reinforcement for RC Structures. fib Bulletin 14, Technical Report, Task Group 9.3—FRP Reinforcement for Concrete Structures, International Federation for Structural Concrete.

    Google Scholar 

  • Grace, N. F., Sayed, G. A., Soliman, A. K., & Saleh, K. R. (1999). Strengthening Reinforced Concrete Beams Using Fiber Reinforced Polymer (FRP) Laminates. ACI Structural Journal, 96(5), 865–875.

    Google Scholar 

  • JSCE. (2001). Recommendations for upgrading of concrete structures with use of continuous fiber sheets, Concrete Engineering Series 41.

    Google Scholar 

  • Khomwan, N., Foster, S. J., & Smith, S. T. (2004). Debonding failure in CFRP strengthened concrete beams, Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering, (pp. 505–514), CICE 2004, Adelaide (Australia).

    Google Scholar 

  • Leone, M., Aiello, M. A., & Matthys, S. (2009). Effect of elevated service temperature on bond between FRP EBR systems and concrete. Composites Part B: Engineering, 40(1), 85–93.

    Article  Google Scholar 

  • Lu, X. Z., Teng, J. G., Ye, L. P., & Jiang, J. J. (2005). Bond–slip models for FRP sheets/plates bonded to concrete, Engineering Structures, (27, pp. 920–937) Elsevier.

    Google Scholar 

  • Madsen, H. O., Krenk, S., & Lind, N. C. (1986). Methods of structural safety. Ellingwood Cliffs: Prentice-Hall.

    Google Scholar 

  • Mazzotti, C., & Savoia, M. (2009). Experimental Tests on Intermediate Crack Debonding Failure in FRP—Strengthened RC Beams Advances in Structural Engineering (Vol. 12 No. 5).

    Google Scholar 

  • Mazzotti, C., Savoia, M., & Ferracuti, B. (2008). An experimental study on delamination of FRP plates bonded to concrete. Construction and Building Materials, 22(7), 1409–1421.

    Article  Google Scholar 

  • Mazzotti, C., Savoia, M., & Ferracuti, B. (2009). A new single-shear set-up for stable debonding of FRP–concrete joints. Construction and Building Materials, 23(4), 1529–1537.

    Article  Google Scholar 

  • McSweeney, B. M., & Lopez, M. M. (2005). FRP-concrete bond behavior: a parametric study through pull-off testing. In C. K. Shield & J. P. Busel (Eds.), Proceedings of 7th International Symposium FRP Reinforcement for Concrete Structures (pp. 441–460). Kansas City, Missouri.

    Google Scholar 

  • Melchers, R. E. (1987). Structural Reliability. Analysis and Prediction, John Wiley & Sons, New York, USA.

    Google Scholar 

  • Monti, G., Alessandri, S., & Santini, S. (2009). Design by Testing: A Procedure for the Statistical Determination of Capacity Models, Journal of Construction and Building Materials, Special Issue on FRP Composites (Vol. 23, pp. 1487–1494), Elsevier.

    Google Scholar 

  • Monti, G., & Petrone, F. (2014). Calibration of Capacity Models. ASCE, Journal of Structural Engineering, (submitted).

    Google Scholar 

  • Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the Theory of Statistics (3rd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  • Napoli, A., Matta, F., Martinelli, E., Nanni, A., & Realfonzo, R. (2010). Modelling and verification of response of RC slabs strengthened in flexure with mechanically fastened FRP laminates. Magazine of Concrete Research, 62(8), 593–605.

    Article  Google Scholar 

  • Neubauer, U., & Rostásy, F. S. (1997). Design aspects of concrete structures strengthened with externally bonded CFRP-plates, Proceedings of 7th International Conference on Structural Faults and Repair Concrete + Composites (Vol. 2, pp. 109–118).

    Google Scholar 

  • Nigro, E., Di Ludovico, M., & Bilotta, A. (2008). FRP-concrete debonding: experimental tests under cyclic actions, Proceedings of the 14th World Conference on Earthquake Engineering . October 12–17, 2008, Beijing, China.

    Google Scholar 

  • Pan, J., Chung, T. C. F., & Leung, C. K. Y. (2009). FRP Debonding from Concrete Beams under Various Load Uniformities Advances in Structural Engineering (Vol. 12 No. 6).

    Google Scholar 

  • Pham, H., & Al-Mahaidi, R. (2004) Bond characteristics of CFRP fabrics bonded to concrete members using wet lay-up method, Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering, CICE 2004 (pp. 407–412) Adelaide (Australia).

    Google Scholar 

  • Said, H., & Wu, Z. (2008). Evaluating and proposing models of predicting IC Debonding Failure. ASCE Journal of Composites for Construction, 12(3), 284–299.

    Article  Google Scholar 

  • Sedlacek, G., & Kraus, O. (2007). Use of safety factors for the design of steel structures according to the Eurocodes. Engineering Failure Analysis, 14(3), 434–441.

    Article  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Article  MATH  MathSciNet  Google Scholar 

  • Sharif, A., Al-Sulaimani, G. J., Basunbul, I. A., Baluch, M. H., & Ghaleb, B. N. (1991). Strengthening of Initially Loaded Reinforced Concrete Beams using FRP Plates. ACI Structural Journal, 91(2), 160–168.

    Google Scholar 

  • Smith, S. T., & Teng, J. G. (2002). FRP-strengthened RC beams-I: review of debonding strength models. Engineering Structures, 24(4), 385–395.

    Article  Google Scholar 

  • Takeo, K., Matsushita, H., Makizumi, T., & Nagashima, G. (1997). Bond characteristics of CFRP sheets in the CFRP bonding technique. Proceedings of Japan Concrete Institute, 19(2), 1599–1604.

    Google Scholar 

  • Taljsten, B. (1994). Plate bonding: Strengthening of existing concrete structures with epoxy bonded plates of steel or fibre reinforced plastics, Doctoral thesis, Lulea, University of Technology, Sweden.

    Google Scholar 

  • Task Group 9.3. (2001). Externally Bonded FRP Reinforcement for RC Structures, Technical Report Bulletin 14, fib-CEB-FIP.

    Google Scholar 

  • Teng, J. G., Chen, J. F., Smith, S. T., & Lam, L. (2001). FRP-strengthened RC structures (p. 245.) John Wiley and Sons: Chichester, West Sussex, UK.

    Google Scholar 

  • Teng, J. G.; Lu, X. Z.; Ye, L. P., & Jiang, J. J. (2004). Recent Research on Intermediate Crack Induced Debonding in FRP Strengthened Beams, Proceedings of the 4th International Conference on Advanced Composite Materials for Bridges and Structures, Calgary, AB, Canada.

    Google Scholar 

  • Teng, J. G., Smith, S. T., Yao, J., & Chen, J. F. (2003). Intermediate Crack Induced Debonding in RC Beams and Slabs. Construction and Building Materials, 17(6–7), 447–462.

    Article  Google Scholar 

  • Travassos, N., Ripper, T., & Appleton, J. (2005). Bond stresses characterization on CFRP-RC interfaces, Proceedings of 3rd International Conference Composites in Construction, CCC2005, Lyon, France.

    Google Scholar 

  • Triantafillou, T., & Plevris, N. (1992). Strengthening of RC beams with epoxy-bonded FRP composite materials. Materials and Structures, 25, 201–211.

    Article  Google Scholar 

  • Ueda, T., Sato, Y., & Asano, Y. (1999). Experimental study on bond strength of continuous carbon fiber sheet, Proceedings of 4th International Symposium on Fiber Reinforced Polymer reinforcement for Reinforced Concrete Structure (pp. 407–16).

    Google Scholar 

  • Wu, Z., & Niu, H. (2007). Prediction of Crack-Induced Debonding Failure in R/C Structures Flexurally Strengthened with Externally Bonded FRP Composite. JSCE Journal of Materials, Concrete Structures and Pavements, 63(4), 620–639.

    Article  Google Scholar 

  • Wu, Z. S., Yuan, H., Yoshizawa, H., & Kanakubo, T. (2001). Experimental/analytical study on interfacial fracture energy and fracture propagation along FRP-concrete interface, ACI International SP-201–8 (pp. 133–52).

    Google Scholar 

  • Yao, J., Teng, J.G., & Chen, J.F. (2005). Experimental study on FRP-to-concrete bonded joints, Composites: Part B Engineering (Vol.36, pp. 99–113) Elsevier.

    Google Scholar 

  • Yua, Z., Dinga, F., & Caib, C. S. (2007). Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 63, 165–174.

    Article  Google Scholar 

  • Zhao, H. D., Zhang, Y., & Zhao, M. (2000). Research on the bond performance between CFRP plate and concrete, Proceedings of 1st Conference on FRP Concrete Structures of China (pp. 247–53).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Monti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Monti, G., Bilotta, A., Napoli, A., Nigro, E., Petrone, F., Realfonzo, R. (2016). Design by Testing and Statistical Determination of Capacity Models. In: Pellegrino, C., Sena-Cruz, J. (eds) Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures. RILEM State-of-the-Art Reports, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7336-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7336-2_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7335-5

  • Online ISBN: 978-94-017-7336-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics