Skip to main content

The Role of Ectomycorrhizal Networks in Seedling Establishment and Primary Succession

  • Chapter
  • First Online:
Mycorrhizal Networks

Part of the book series: Ecological Studies ((ECOLSTUD,volume 224))

Abstract

In developed forests and secondary successional sites, host plants can readily access ectomycorrhizal (ECM) fungi because of the ubiquitous ECM mycelia and spores in soil, but this is not the case in some primary successional sites. In a volcanic desert on Mt Fuji, Japan, most of the area is non-mycorrhizal habitat and has poorly developed soil spore-banks. ECM habitat, i.e. pioneer willow shrubs and a small surrounding area containing ECM mycelia, are quite sparsely distributed, accounting for about 1 % of the ground surface in total. Such unique conditions provide us an interesting opportunity to explore the magnitude and role of direct mycelial connections between plants, i.e. ECM networks, in the field. It is difficult to observe individual ECM mycelial spread in soil, but the distribution of sporocarps and ECM roots having the same genotype indicate the spread of a mycelium in soil. We applied microsatellite markers to genotype sporocarps and ECM tips, and found that genets of two pioneer Laccaria species were small in size (mostly <1 m) and ephemeral. In contrast, genets of Scleroderma included some long-lived large genets (>10 m). These results indicate that ECM networks could vary considerably in size and longevity, even in the same site and associated with the same host species. Field transplanting experiment revealed that current-year willow seedlings rarely formed ECM associations in most habitats of the desert and showed poor growth. ECM infection from spores did not significantly improve seedling growth, indicating a small isolated mycelium on a tiny seeding may not be enough to acquire sufficient nutrients from extremely nutrient poor scoria. In contrast, seedlings transplanted near the pre-established willow shrubs, where ECM networks are available, readily formed ECM associations and grew well. Moreover, artificially reproduced ECM networks in previously non-mycorrhizal habitats significantly improved the growth of connected seedlings in 10 of 11 ECM fungal species in this desert. Therefore, ECM networks appear to be mostly positive and could be critical to seedling establishment, at least in this primary successional setting. Some previously proposed mechanisms may be less relevant to the observed positive effect of ECM networks on seedling establishment. For example, plant-to-plant carbon transfer through ECM networks might work for seedlings in dark forest floor, but not in primary successional settings characterized by strong sun light. More relevant mechanisms should include rapid ECM colonization with low costs, larger absorbing surface area than a solitary mycelium, and nutrient translocation within a network from nutrient rich soil patches to most demanding parts, often seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants III: protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103:507–514

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants IV: the utilization of peptides by Birch (Betula pendula L) infected with different mycorrhizal Fungi. New Phytol 112:55–60

    Article  CAS  Google Scholar 

  • Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990: interactions of rodents and mycorrhizal fungi. Mycol Res 96:447–453

    Article  Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Soderstrom B (1993) Nitrogen translocation between Alnus glutinosa (L) Gaertn seedlings inoculated with Frankia sp and Pinus contorta Doug Ex-Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124:231–242

    Article  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418

    Article  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320

    Article  CAS  PubMed  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  PubMed  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants V: foraging behavior and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecol Lett 7:538–546

    Article  Google Scholar 

  • Cazares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416

    Article  PubMed  Google Scholar 

  • Chagnon PL, Bradley RL, Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol 194:307–312

    Article  PubMed  Google Scholar 

  • Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963

    Article  Google Scholar 

  • Dahlberg A (1997) Population ecology of Suillus variegatus in old Swedish Scots pine forests. Mycol Res 101:47–54

    Article  Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L, Fr) Roussel revealed by somatic incompatibility. New Phytol 128:225–234

    Article  Google Scholar 

  • Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72:505–521

    Article  Google Scholar 

  • Dickie IA, Martinez-Garcia LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39

    Article  CAS  Google Scholar 

  • Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597

    Article  PubMed  Google Scholar 

  • Ekblad A, Huss-Danell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza. New Phytol 131:453–459

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants I: translocation of C14-labeled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants II: the uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T (2011) Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard. Polar Biol 34:667–673

    Article  Google Scholar 

  • Galante TE, Horton TR, Swaney DP (2011) 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia 103:1175–1183

    Article  PubMed  Google Scholar 

  • Gryta H, Debaud JC, Effosse A, Gay G, Marmeisse R (1997) Fine-scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune forest ecosystems. Mol Ecol 6:353–364

    Article  Google Scholar 

  • Halvorson JJ, Smith JL (2009) Carbon and nitrogen accumulation and microbial activity in Mount St. Helens pyroclastic substrates after 25 years. Plant Soil 315:211–228

    Article  CAS  Google Scholar 

  • He XH, Critchley C, Ng H, Bledsoe C (2005) Nodulated N(2)-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N(2)-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp using (15)NH(4)(+) or (15)NO(3)(-) supplied as ammonium nitrate. New Phytol 167:897–912

    Article  CAS  PubMed  Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506

    Article  Google Scholar 

  • Hirose D, Kikuchi J, Kanzaki N, Futai K (2004) Genet distribution of sporocarps and ectomycorrhizas of Suillus pictus in a Japanese white pine plantation. New Phytol 164:527–541

    Article  Google Scholar 

  • Hirose T, Tateno M (1984) Soil-nitrogen patterns Induced by colonization of Polygonum cuspidatum on Mt Fuji. Oecologia 61:218–223

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339

    Article  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, Cazares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11–18

    Article  Google Scholar 

  • Ingleby K, Last FT, Mason PA (1985) Vertical-distribution and temperature relations of sheathing mycorrhizas of Betula spp. growing on coal spoil. Forest Ecol Manag 12:279–285

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440

    Article  CAS  PubMed  Google Scholar 

  • Ishida TA, Nara K, Tanaka M, Kinoshita A, Hogetsu T (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180:491–500

    Article  PubMed  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cazares E (1999) Ectomycorrhizal fungi in Lyman Lake Basin: a comparison between primary and secondary successional sites. Mycologia 91:575–582

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cazares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49

    Article  PubMed  Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kretzer AM, Dunham S, Molina R, Spatafora JW (2004) Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol 161:313–320

    Article  CAS  Google Scholar 

  • Kytoviita MM, Vestberg M, Tuom J (2003) A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology 84:898–906

    Article  Google Scholar 

  • Lian CL, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618

    Article  CAS  PubMed  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, London, pp 357–423

    Google Scholar 

  • Murata M, Kinoshita A, Nara K (2013) Revisiting the host effect on ectomycorrhizal fungal communities: implications from host-fungal associations in relict Pseudotsuga japonica forests. Mycorrhiza 23:641–653

    Article  PubMed  Google Scholar 

  • Nara K (1998) Composition of symbiotic fungi and their ecological roles in beech forests. In Kaneko S, Sahashi N (eds) Fungi in beech forests. Bun-ichi Sogo Shuppan, Japan, pp 79–149 (in Japanese)

    Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    Article  PubMed  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707

    Article  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003a) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Article  Google Scholar 

  • Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003b) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    Article  CAS  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Obase K, Tamai Y, Miyamoto T, Yajima T (2005) Macrofungal flora on the volcano Usu, deforested by 2000 eruptions. Eur J Forest Res 8:65–70

    Google Scholar 

  • Obase K, Tamai Y, Yajima T, Miyamoto T (2007) Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza 17:209–215

    Article  PubMed  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511

    Article  Google Scholar 

  • Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc Roy Soc Edin 96B:89–110

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Robinson D, Fitter A (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13

    Article  CAS  Google Scholar 

  • Selosse MA, Richard F, He XH, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Simard SW, Durall DM, Jones MD (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal Ecology. Springer, Berlin, pp 33–74

    Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359

    Article  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  PubMed  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Vries FW, Kuyper TW (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems I: above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can J Bot 77:1821–1832

    Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • Vincenot L, Nara K, Sthultz C, Labbe J, Dubois MP, Tedersoo L, Martin F, Selosse MA (2012) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 21:281–299

    Article  CAS  PubMed  Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC (1981) Biomass and nutrient concentrations of sporocarps produced by mycorrhizal and decomposer fungi in Abies amabilis stands. Oecologia 50:170–175

    Article  PubMed  Google Scholar 

  • Wadud MA, Lian CL, Nara K, Hogetsu T (2006a) Isolation and characterization of five microsatellite loci in an ectomycorrhizal fungus Laccaria laccata. Mol Ecol Notes 6:700–702

    Article  CAS  Google Scholar 

  • Wadud MA, Lian CL, Nara K, Ishida TA, Hogetsu T (2006b) Development of microsatellite markers from an ectomycorrhizal fungus, Laccaria amethystina, by a dual-suppression-PCR technique. Mol Ecol Notes 6:130–132

    Article  CAS  Google Scholar 

  • Wadud MA, Lian CL, Nara K, Ishida TA, Hogetsu T (2007) Below-ground genet structure of an ectomycorrhizal fungus Laccaria amethystina in a volcanic desert on Mount Fuji. J Agrofor Environ 1:157–162

    Google Scholar 

  • Wadud MA, Lian CL, Nara K, Reza MS, Hogetsu T (2008) Below-ground genet differences of an ectomycorrhizal fungus Laccaria laccata infecting Salix stands in primary successional stage. J Agrofor Environ 2:1–6

    Google Scholar 

  • Wadud MA, Nara K, Lian CL, Ishida TA, Hogetsu T (2014) Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystine and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24:551–563

    Article  PubMed  Google Scholar 

  • Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159

    Article  Google Scholar 

  • Wu B, Maruyama H, Teramoto M, Hogetsu T (2012) Structural and functional interactions between extraradical mycelia of ectomycorrhizal Pisolithus isolates. New Phytol 194:1070–1078

    Article  PubMed  Google Scholar 

  • Wu B, Nara K, Hogetsu T (2001) Can C14-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146

    Article  CAS  Google Scholar 

  • Wu B, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Okabe H (2006) Distribution of Frankia, ectomycorrhizal fungi, and bacteria in soil after the eruption of Miyake-Jima (Izu Islands, Japan) in 2000. J Forest Res 11:21–26

    Article  Google Scholar 

  • Zhou ZH, Miwa M, Matsuda Y, Hogetsu T (2001) Spatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets. J Plant Res 114:179–185

    Article  Google Scholar 

  • Zhou ZH, Miwa M, Nara K, Wu BY, Nakaya H, Lian CL, Miyashita N, Oishi R, Maruta E, Hogetsu T (2003) Patch establishment and development of a clonal plant, Polygonum cuspidatum, on Mount Fuji. Mol Ecol 12:1361–1373

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank T. Horton for inviting me to contribute to this volume and constructive comments on a draft of this chapter. This work was supported by JSPS KAKENHI Grants 16780111, 19380083, 21658054, and 22380083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhide Nara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nara, K. (2015). The Role of Ectomycorrhizal Networks in Seedling Establishment and Primary Succession. In: Horton, T. (eds) Mycorrhizal Networks. Ecological Studies, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7395-9_6

Download citation

Publish with us

Policies and ethics