Skip to main content

Climate Change and Vector-Borne Diseases

  • Chapter
  • First Online:
Climate Change and Agriculture Worldwide

Abstract

Diseases transmitted by insect vectors have a major impact on human and animal health, as well as on the economy of societies. Because of their modes of transmission, these vector-borne diseases—zoonotic or not—are particularly sensitive to climate change. The climate and its variations determine, sometimes substantially, the presence of vectors at a given place, as well as their density and capacity to transmit diseases. The climate also has an influence on the presence and density of animals and humans, in addition to the survival capacities of pathogens in a given environment. All of the components, conditions and processes necessary for the transmission of these diseases form a complex dynamic system whose behaviour, under the influence of the climate and other environmental variables, will determine whether or not transmission will occur. Experimental and epidemiological studies are carried out in laboratory and field conditions to gain greater insight into the underlying biological processes and measure the impact of climate parameters on these processes. Mathematical modelling is used to represent these systems and simulate their behaviour under different environmental conditions. This major tool sheds light on the biological phenomena involved in the transmission of given pathogens, while also simulating, over a more or less long time scale, spatiotemporal variations in the intensity of this transmission so as to be able to tailor control strategies against these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A serotype represents an antigenic property that enables identification of a cell (bacteria, red blood cell, etc.) or virus by serological methods.

References

  • Black P, Nunn M (2009) Conséquences du changement climatique et des modifications environnementales ou ré-émergentes et sur les productions animales. OIE, Genève

    Google Scholar 

  • Boutrais J (1999) Les éleveurs, une catégorie oubliée de migrants forcés: la mobilité sous contrainte. In: Déplacés et réfugiés, IRD, pp. 161–192

    Google Scholar 

  • Chevalier V, Tran A, Durand B (2014) Predictive modeling of West Nile virus transmission risk in the Mediterranean Basin: how far from landing? Int J Environ Res Public Health 11:67–90

    Article  PubMed Central  Google Scholar 

  • Courtin F, Jamonneau V, Duvallet G, Garcia A, Coulibaly B et al (2008) Sleeping sickness in West Africa (1906–2006): changes in spatial repartition and lessons from the past. Trop Med Int Health 13:333–344

    Article  Google Scholar 

  • Courtin F, Rayaisse J, Tamboura I, Serdébéogo O, Koudougou Z et al (2010) Updating the northern tsetse limit in Burkina Faso (1949–2009): impact of global change. Int J Environ Res Public Health 7:1708–1719

    Article  PubMed Central  PubMed  Google Scholar 

  • Fèvre E, Coleman P, Odiit M, Magona J, Welburn S et al (2001) The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda. Lancet 358:625–628

    Article  PubMed  Google Scholar 

  • Gould E, Higgs S (2009) Impact of climate change and other factors on emerging arboviruses diseases. Trans R Soc Trop Med Hyg 103:109–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guis H, Caminade C, Calvete C, Morse A, Tran A et al (2012) Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe. J R Soc Interface 9:339–350

    Article  PubMed Central  PubMed  Google Scholar 

  • Kilpatrick A (2011) Globalization, land use, and the invasion of West Nile virus. Science 21:323–327

    Article  Google Scholar 

  • King D, Peckham C, Waage J, Brownlie J, Woolhouse M (2006) Infectious diseases: preparing for the future. Science 313:1392–1393

    Article  CAS  PubMed  Google Scholar 

  • Linthicum K, Anyamba A, Tucker C, Kelley P, Myers M et al (1999) Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285:397–400

    Article  CAS  PubMed  Google Scholar 

  • Mellor P, Boorman J, Wilkinson P, Martinez-Gomez F (1983) Potential vectors of bluetongue and African horse sickness viruses in Spain. Veterinary Record, pp 229–230

    Google Scholar 

  • Mondet B, Diaïté A, Ndione JA, Fall AG, Chevalier V et al (2005) Rainfall patterns and population dynamics of Aedes (Aedimorphus) vexans arabiensis Patton, 1905 (Diptera, Culicidae), a potential vector of Rift Valley fever virus in Senegal. J Vector Ecol 30:102–110

    PubMed  Google Scholar 

  • Moore S, Shrestha S, Tomlinson K, Vuong H (2011) Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. J R Soc Interface 9:817–830

    Article  PubMed Central  PubMed  Google Scholar 

  • Oleaga-Perez A, Perez-Sanchez R, Encinas-Grandes A (1990) Distribution and biology of ornithodoros erraticus in parts of Spain affected by African swine fever. Vet Rec 13:32–37

    Google Scholar 

  • Peyre M, Chevalier V, Abdo-Salem S, Velthuis A, Antoine-Moussiaux N et al (2014) A systematic scoping study of the socio-economic impact of Rift Valley Fever: research gaps and needs. Zoonoses and Public Health. 62(5):309–325

    Google Scholar 

  • Randolph S (2009) Perspectives on climate change impacts on infectious diseases. Ecology 90:927–931

    Article  PubMed  Google Scholar 

  • Rodhain F (1985) Les relations arbovirus-vecteurs. Bull de la Soc de Pathol Exot 78:763–768

    CAS  Google Scholar 

  • Sorre M (1933) Complexes pathogènes et géographie médicale. Hygeia Rev Bras de Geogr Med e da Sauda 2:2–14

    Google Scholar 

  • Soti V, Tran A, Degenne P, Chevalier V, Lo Seen D et al (2012) Combining hydrology and mosquito population models to identify the drivers of Rift Valley Fever emergence in semi-arid regions of West Africa. PLOS Negl Trop Dis 6:e1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Tran A, Sudre B, Paz S, Rossi M, Desbrosse A et al (2014) Environmental predictors of West Nile fever risk in Europe. Int J Health Geogr 13(1):26

    Article  PubMed Central  PubMed  Google Scholar 

  • Venail R, Balenghien T, Guis H, Tran A, Setier-Rio M et al (2012) Assessing diversity and abundance of vector populations at a national scale: example of Culicoides surveillance in France after Bluetongue virus emergence. In: Mehlhorn H (ed), Arthropods as vectors of emerging diseases. Springer-Verlag, Berlin. vol 3, pp 77–102 (Series Parasitology Research Monographs)

    Google Scholar 

  • Vial L (2009) Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16:191–202

    Article  CAS  PubMed  Google Scholar 

  • Vial L, Diatta G, Tall A, el Ba H, Bouganali H et al (2006) Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 368:37–43

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Éditions Quæ

About this chapter

Cite this chapter

Chevalier, V., Courtin, F., Guis, H., Tran, A., Vial, L. (2016). Climate Change and Vector-Borne Diseases. In: Torquebiau, E. (eds) Climate Change and Agriculture Worldwide. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7462-8_8

Download citation

Publish with us

Policies and ethics