Skip to main content

Structure-Function Studies of the Cytochrome bc 1 Complex of Anoxygenic Photosynthetic Purple Bacteria

  • Chapter
  • First Online:
Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

Summary

Photosynthetic non-oxygenic purple bacteria possess various energy-conserving machineries that allow them to grow either photosynthetically, anaerobically or aerobically. The photosynthetic and respiratory branches of the power system in purple bacteria are connected via the cytochrome bc 1 complex (cyt bc 1), which catalyzes electron transfer from quinol to cyt c and couples this reaction to proton translocation across the photosynthetic membrane, generating a trans-membrane proton gradient essential for various cellular activities including ATP synthesis. Crystal structures of wild-type and mutant cyt bc 1 complexes have been determined for the closely related photosynthetic bacteria R. sphaeroides and R. capsulatus in the presence of various inhibitors or substrates. These structures are remarkably similar to their mitochondrial counterparts but do feature insertions or deletions that are characteristic of the bacterial enzyme complexes. Thus, it is expected that bacterial cyt bc 1 complexes function in a manner similar to mitochondrial enzymes, justifying their use as model systems. The roles of insertions in bacterial cyt bc 1 function are discussed in relation to the subunit compositions of bacterial complexes and to mutagenesis studies. The mechanism of cyt bc 1 function is also discussed in the context of the architecture of quinol oxidation and quinone reduction sites, as revealed by inhibitor binding studies of both mitochondrial and bacterial bc 1 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Btbc 1 :

Bos taurus mitochondrial bc 1

cyt bc 1 :

Ubiquinol-cytochrome c oxidoreductase cytochrome bc 1 or bc 1

cyt:

Cytochrome

famoxadone:

(S)-5-Methyl-5-(4-phenoxy-phenyl)-3-(phenylamino)-1,3-oxazolidine-2,4-dione

fenamidone:

(RS)-5-Methyl-2- (methylsulfanyl)-5-phenyl-3-(phenylamino)-3,5-dihydro-4H-imidazol-4-one

Ggbc 1 :

Gallus gallus mitochondrial bc 1

IMS:

Inter-membrane space

ISP:

Iron-sulfur protein

ISP-ED:

Extrinsic domain of ISP

JG144:

3-anilino-5-(2,4-difluoro-phenyl)-5-methyl-oxazol-idine-2,4-dione

LHC:

Light-harvesting complex

Mtbc 1 :

Mitochondrial bc 1

NCS:

Non-crystallographic symmetry

Pdbc 1 :

bc 1 from Paracoccus denitrificans

pmf:

Proton motive force

Q:

Ubiquinone

QH2 :

Ubiquinol

QN :

Ubiquinone reduction

QP :

Ubiquinol oxidation

RC:

Bacterial reaction center

Rcbc 1 :

bc 1 from Rhodobacter capsulatus

rms deviation:

Root-mean square deviation

Rsbc 1 :

bc 1 from the photosynthetic bacterium Rhodobacter sphaeroides

SAMICS:

Surface affinity-modulated ISP-ED conformation switch mechanism

Scbc 1 :

Saccharomyces cerevisiae mitochondrial bc 1

TM:

Trans-membrane

References

  • Akiba T, Toyoshima C, Matsunaga T, Kawamoto M, Kubota T, Fukuyama K, Namba K, Matsubara H (1996) Three-dimensional structure of bovine cytochrome bc1 complex by electron cryomicroscopy and helical image reconstruction. Nat Struct Biol 3:553–561

    Article  CAS  PubMed  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, …, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Biokhimiia 70:200–214

    Article  CAS  Google Scholar 

  • Arai H, Roh JH, Kaplan S (2008) Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol 190:286–299

    Article  CAS  PubMed  Google Scholar 

  • Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b6f complex from nostoc sp. PCC 7120. J Biol Chem 284:9861–9869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Huang LS (2003) Observations concerning the quinol oxidation site of the cytochrome bc1 complex. FEBS Lett 555:13–20

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Huang LS (2011) Conformationally linked interaction in the cytochrome bc(1) complex between inhibitors of the Q(o) site and the Rieske iron-sulfur protein. Biochim Biophys Acta 1807:1349–1363

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Huang L, Saechao LK, Pon NG, Valkova-Valchanova M, Daldal F (2004) X-ray structure of Rhodobacter capsulatus cytochrome bc1: comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81:251–275

    Article  CAS  PubMed  Google Scholar 

  • Borek A, Sarewicz M, Osyczka A (2008) Movement of the iron-sulfur head domain of cytochrome bc(1) transiently opens the catalytic Q(o) site for reaction with oxygen. Biochemistry 47:12365–12370

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowyer JR, Crofts AR (1981) On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Biochim Biophys Acta 636:218–233

    Article  CAS  PubMed  Google Scholar 

  • Brandt U (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer. FEBS Lett 387:1–6

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, Okun JG (1997) Role of deprotonation events in ubihydroquinone: cytochrome c oxidoreductase from bovine heart and yeast mitochondria. Biochemistry 36:11234–11240

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, von Jagow G (1991) Analysis of inhibitor binding to the mitochondrial cytochrome c reductase by fluorescence quench titration: evidence for a ‘catalytic switch’ at the Qo center. Eur J Biochem 195:163–170

    Article  CAS  PubMed  Google Scholar 

  • Bruel C, di Rago J, Slonimski PP, Lemesle-Meunier D (1995) Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae. J Biol Chem 270:22321–22328

    Article  CAS  PubMed  Google Scholar 

  • Bueno JM, Herreros E, Angulo-Barturen I, Ferrer S, Fiandor JM, Gamo FJ, Gargallo-Viola D, Derimanov G (2012) Exploration of 4(1H)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Future Med Chem 4:2311–2323

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci U S A 104:7887–7892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellani M, Covian R, Kleinschroth T, Anderka O, Ludwig B, Trumpower BL (2010) Direct demonstration of half-of-the-sites reactivity in the dimeric cytochrome bc1 complex: enzyme with one inactive monomer is fully active but unable to activate the second ubiquinol oxidation site in response to ligand binding at the ubiquinone reduction site. J Biol Chem 285:502–510

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Wang ZG (1989) How rapid are the internal reactions of the ubiquinol-cytochrome-C2 oxidoreductase. Photosynth Res 22:69–87

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of rhodopseudomonas sphaeroides: a modified Q-cycle mechanism. Biochim Biophys Acta 723:202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Barquera B, Bechmann G, Guergova M, Salcedo-Hernandez R, Hacker B, Hong S, Gennis RB (1995) Structure and function in the bc1-complex of Rb. sphaeroides. In: Pathis P (ed) Photosynthesis: from light to biosphere, vol 2. Kluwer, Dordrecht, pp 493–500

    Google Scholar 

  • Crofts AR, Hong S, Ugulav N, Barquera B, Gennis R, Guergova-Kuras M, Berry EA (1999) Pathways for proton release during ubihydroquinone oxidation by the bc1 complex. Proc Natl Acad Sci U S A 96:10021–10026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Lhee S, Crofts SB, Cheng J, Rose S (2006) Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits. Biochim Biophys Acta 1757:1019–1034

    Article  CAS  PubMed  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M, Daldal F (2000a) Probing the role of the Fe-S subunit hinge region during Q(o) site catalysis in Rhodobacter capsulatus bc(1) complex. Biochemistry 39:15475–15483

    Article  CAS  PubMed  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M, Moser CC, Dutton PL, Daldal F (2000b) Uncovering the [2Fe2S] domain movement in cytochrome bc(1) and its implications for energy conversion. Proc Natl Acad Sci U S A 97:4567–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Robertson DE, Daldal F, Dutton PL (1992) Cytochrome bc1 complex [2Fe-2S] cluster and its interaction with ubiquinone and ubihydroquinone at the Qo site: a double-occupancy Qo site model. Biochemistry 31:3144–3158

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Moser CC, Robertson DE, Tokito MK, Daldal F, Dutton PL (1995) Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc1 complex. Biochemistry 34:15979–15996

    Article  CAS  PubMed  Google Scholar 

  • Drose S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283:21649–21654

    Article  PubMed  CAS  Google Scholar 

  • Dutton PL, Wilson DF, Lee CP (1970) Oxidation-reduction potentials of cytochromes in mitochondria. Biochemistry 9:5077–5082

    Article  CAS  PubMed  Google Scholar 

  • Esser L, Quinn B, Li Y, Zhang M, Elberry M, Yu L, Yu CA, Xia D (2004) Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc1 complex. J Mol Biol 341:281–302

    Article  CAS  PubMed  Google Scholar 

  • Esser L, Gong X, Yang S, Yu L, Yu CA, Xia D (2006) Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc1 complex. Proc Natl Acad Sci U S A 103:13045–13050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esser L, Elberry M, Zhou F, Yu CA, Yu L, Xia D (2008a) Inhibitor complexed structures of the cytochrome bc1 from the photosynthetic bacterium Rhodobacter sphaeroides at 2.40 Ã… resolution. J Biol Chem 283:2846–2857

    Article  CAS  PubMed  Google Scholar 

  • Esser L, Yu L, Yu C, Xia D (2008b) Insights into the mechanisms of quinol oxidation in cytochrome bc1 in light of the structure of bacterial complex. Biophys Rev Lett 2:229–257

    Article  Google Scholar 

  • Esser L, Yu CA, Xia D (2014) Structural basis of resistance to anti-cytochrome bc1 complex inhibitors: implication for drug improvement. Curr Pharm Des 20:704–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Wen X, Yu C, Esser L, Tsao S, Quinn B, Zhang L, …, Xia D (2002) The crystal structure of mitochondrial cytochrome bc1 in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 41:11692–11702

    Google Scholar 

  • Gao X, Wen X, Esser L, Yu L, Yu CA, Xia D (2003) Structural basis for the quinone reduction in bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors. Biochemistry 42:9067–9080

    Article  CAS  PubMed  Google Scholar 

  • Garland PB, Clegg RA, Doxer D, Downie JA, Haddock BA (1975) Proton-translocating nitrate reductase of Escherichia coli. In: Quagliatrello E, Papa S, Falmieri F, Slater EC, Siliprandi N (eds) Electron Transfer Chains and Oxidative Phosphorylation. North-Holland Publishing Co., Amsterdam, pp 351–358

    Google Scholar 

  • Gennis RB, Barquera B, Hacker B, Van Doren SR, Arnaud S, Crofts AR, Davidson E, …, Daldal F (1993) The bc1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. J Bioenerg Biomembr 25:195–209

    Google Scholar 

  • Gopta OA, Feniouk BA, Junge W, Mulkidjanian AY (1998) The cytochrome bc1 complex of Rhodobacter capsulatus: ubiquinol oxidation in a dimeric Q-cycle? FEBS Lett 431:291–296

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Davidson E, Daldal F (1992) Mutagenesis of methionine-183 drastically affects the physicochemical properties of cytochrome c1 of the bc1 complex of Rhodobacter capsulatus. Biochemistry 31:11864–11873

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri F, Nelson BD (1975) Studies on the characteristics of a proton pump in phospholipid vesicles inlayed with purified complex III from beef heart mitochondria. FEBS Lett 54:339–342

    Article  CAS  PubMed  Google Scholar 

  • Guner S, Robertson DE, Yu L, Qiu ZH, Yu CA, Knaff DB (1991) The Rhodospirillum rubrum cytochrome bc1 complex: redox properties, inhibitor sensitivity and proton pumping. Biochim Biophys Acta 1058:269–279

    Article  CAS  PubMed  Google Scholar 

  • Gurung B, Yu L, Xia D, Yu CA (2005) The iron-sulfur cluster of the Rieske iron-fulfur protein functions as a proton-exiting gate in teh cytochrome bc(1) complex. J Biol Chem 280:24895–24902

    Article  CAS  PubMed  Google Scholar 

  • Hansen KC, Schultz BE, Wang G, Chan SI (2000) Reaction of Escherichia coli cytochrome bo3 and mitochondrial cytochrome bc1 with a photoreleasable decylubiquinol. Biochim Biophys Acta 1456:121–137

    Article  CAS  PubMed  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci U S A 110:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh KL, Westler WM, Markley JL (2010) NMR investigations of the Rieske protein from Thermus thermophilus support a coupled proton and electron transfer mechanism. J Am Chem Soc 132:7908–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure at 2.3 A resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 15:669–684

    Article  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, …, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex [see comments]. Science 281:64–71

    Google Scholar 

  • Kim H, Xia D, Yu CA, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1998) Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart. Proc Natl Acad Sci U S A 95:8026–8033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschroth T, Castellani M, Trinh CH, Morgner N, Brutschy B, Ludwig B, Hunte C (2011) X-ray structure of the dimeric cytochrome bc(1) complex from the soil bacterium Paracoccus denitrificans at 2.7-A resolution. Biochim Biophys Acta 1807:1606–1615

    Article  CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Selamoglu N, Lanciano P, Cooley JW, Forquer I, Kramer DM, Daldal F (2011) Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome BC1. J Biol Chem 286:18139–18148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard K, Wingfield P, Arad T, Weiss H (1981) Three-dimensional structure of ubiquinol: cytochrome c reductase from Neurospora mitochondria determined by electron microscopy of membrane crystals. J Mol Biol 149:259–274

    Article  CAS  PubMed  Google Scholar 

  • Leung KH, Hinkle PC (1975) Reconstitution of ion transport and respiratory control in vesicles formed from reduced coenzyme Q-cytochrome c reductase and phospholipids. J Biol Chem 250:8467–8471

    CAS  PubMed  Google Scholar 

  • Lin IJ, Chen Y, Fee JA, Song J, Westler WM, Markley JL (2006) Rieske protein from Thermus thermophilus: 15N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential. J Am Chem Soc 128:10672–10673

    Article  CAS  PubMed  Google Scholar 

  • Link TA (1997) The role of the ‘Rieske’ iron sulfur protein in the hydroquinone oxidation (Qp) site of the cytochrome bc1 complex – the ‘proton-gated affinity change’ machanism. FEBS Lett 412:257–264

    Article  CAS  PubMed  Google Scholar 

  • Link TA, Pierik AJ, Assmann C, von Jagow G (1992) Determination of the redox properties of the Rieske [2Fe-2S] cluster of bovine heart bc1 complex by direct electrochemistry of a water-soluble fragment. Eur J Biochem 208:685–691

    Article  CAS  PubMed  Google Scholar 

  • Link TA, Haase U, Brandt U, von Jagow G (1993) What information do inhibitors provide about the structure of the hydroquinone oxidation site of ubihydroquinone: cytochrome c oxidoreductase? J Bioenerg Biomembr 25:221–232

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yu CA, Yu L (2004) The role of extra fragment at the C-terminal of cytochrome b (Residues 421–445) in the cytochrome bc1 complex from Rhodobacter sphaeroides. J Biol Chem 279:47363–47371

    Article  CAS  PubMed  Google Scholar 

  • Lorusso M, Cocco T, Minuto M, Papa S (1990) Effect of ATP on the activity of bovine heart mitochondrial b-c1 complex. FEBS Lett 267:103–106

    Article  CAS  PubMed  Google Scholar 

  • Ma H-W, Yang S, Yu L, Yu C-A (2008) Formation of engineered intersubunit disulfide bond in cytochrome bc1 complex disrupts electron transfer activity in the complex. Biochim Biophys Acta (BBA) – Bioenerg 1777:317–326

    Article  CAS  Google Scholar 

  • Mather MW, Yu L, Yu CA (1995) The involvement of threonine 160 of cytochrome b of Rhodobacter sphaeroides cytochrome bc1 complex in quinone binding and interaction with subunit IV. J Biol Chem 270:28668–28675

    Article  CAS  PubMed  Google Scholar 

  • McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Yu L, Yu CA (1991) Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone. Biochemistry 30:230–238

    Article  CAS  PubMed  Google Scholar 

  • Millett F, Durham B (2009) Chapter 5 use of ruthenium photooxidation techniques to study electron transfer in the cytochrome bc1 complex. Methods Enzymol 456:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1972) Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. J Bioenerg 3:5–24

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  CAS  PubMed  Google Scholar 

  • Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY (2007) Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle. Photochem Photobiol Sci 6:19–34

    Article  CAS  PubMed  Google Scholar 

  • Muller F, Crofts AR, Kramer DM (2002) Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex. Biochemistry 41:7866–7874

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Nogueira C, Barros J, Sa MJ, Azevedo L, Taipa R, Torraco A, Meschini MC, …, Santorelli FM (2013) Novel TTC19 mutation in a family with severe psychiatric manifestations and complex III deficiency. Neurogenetics 14:153–160

    Google Scholar 

  • Nohl H, Jordan W (1986) The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 138:533–539

    Article  CAS  PubMed  Google Scholar 

  • Obungu VH, Amyot S, Wang Y, Beattie DS (1998) Amino acids involved in the putative movement of the iron-sulfur protein of the BC1 complex during catalysis. FASEB J 12:A1394

    Google Scholar 

  • Obungu VH, Wang YD, Amyot SM, Gocke CB, Beattie DS (2000) Mutations in the tether region of the iron-sulfur protein affect the activity and assembly of the cytochrome BC1 complex of yeast mitochondria. Biochim Biophys Acta 1457:36–44

    Article  CAS  PubMed  Google Scholar 

  • Oh JI, Kaplan S (2001) Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607–612

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Dutton PL (1976) Further studies on the Rieske iron-sulfur center in mitochondrial and photosynthetic systems: a pK on the oxidized form. FEBS Lett 65:117–119

    Article  CAS  PubMed  Google Scholar 

  • Quinlan CL, Gerencser AA, Treberg JR, Brand MD (2011) The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286:31361–31372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagukguk S, Yang S, Yu CA, Yu L, Durham B, Millett F (2007) Effect of mutations in the cytochrome b ef loop on the electron-transfer reactions of the Rieske iron-sulfur protein in the cytochrome bc(1) complex. Biochemistry 46:1791–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich PR (2004) The quinone chemistry of bc complexes. Biochim Biophys Acta 1658:165–171

    Article  CAS  PubMed  Google Scholar 

  • Robertson DE, Ding H, Chelminski PR, Slaughter C, Hsu J, Moomaw C, Tokito M, …, Dutton PL (1993) Hydroubiquinone-cytochyrome c2 oxidoreductase from Rhodobacter capsulatus: definition of a minimal, functional isolated preparation. Biochemistry 9:1310–1317

    Google Scholar 

  • Rottenberg H, Covian R, Trumpower BL (2009) Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J Biol Chem 284:19203–19210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadek HA, Nulton-Persson AC, Szweda PA, Szweda LI (2003) Cardiac ischemia/reperfusion, aging, and redox-dependent alterations in mitochondrial function. Arch Biochem Biophys 420:201–208

    Article  CAS  PubMed  Google Scholar 

  • Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skulachev VP, Chistyakov VV, Jasaitis AA, Smirnova EG (1967) Inhibition of the respiratory chain by zinc ions. Biochem Biophys Res Commun 26:1–6

    Article  CAS  PubMed  Google Scholar 

  • Slater EC (1973) The mechanism of action of the respiratory inhibitor, antimycin. Biochim Biophys Acta 301:129–154

    Article  CAS  PubMed  Google Scholar 

  • Staniek K, Gille L, Kozlov AV, Nohl H (2002) Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Free Radic Res 36:381–387

    Article  CAS  PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Swierczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A (2010) An electronic bus bar lies in the core of cytochrome bc1. Science 329:451–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thony-Meyer L (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Yu L, Mather MW, Yu CA (1997) The involvement of serine 175 and alanine 185 of cytochrome b of Rhodobacter sphaeroides cytochrome bc1 complex in interaction with iron-sulfur protein. J Biol Chem 272:23722–23728

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Yu L, Mather MW, Yu CA (1998) Flexibility of the neck region of the rieske iron-sulfur protein is functionally important in the cytochrome bc1 complex. J Biol Chem 273:27953–27959

    Article  CAS  PubMed  Google Scholar 

  • Tian H, White S, Yu L, Yu CA (1999) Evidence for the head domain movement of the rieske iron-sulfur protein in electron transfer reaction of the cytochrome bc1 complex. J Biol Chem 274:7146–7152

    Article  CAS  PubMed  Google Scholar 

  • Trumpower BL (1976) Evidence for a protonmotive Q cycle mechanism of electron transfer through the cytochrome b-c1 complex. Biochem Biophys Res Commun 70:73–80

    Article  CAS  PubMed  Google Scholar 

  • Trumpower BL (1990) Cytochrome bc1 complexes of microorganisms. Microbiol Rev 54:101–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trumpower BL, Gennis RB (1994) Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem 63:675–716

    Article  CAS  PubMed  Google Scholar 

  • Tso SC, Yin Y, Yu CA, Yu L (2006) Identification of amino acid residues essential for reconstitutive activity of subunit IV of the cytochrome bc(1) complex from Rhodobacter sphaeroides. Biochim Biophys Acta 1757:1561–1567

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  CAS  PubMed  Google Scholar 

  • Ugulava NB, Crofts AR (1998) CD-monitored redox titration of the Rieske Fe-S protein of Rhodobacter sphaeroides: pH dependence of the midpoint potential in isolated bc1 complex and in membranes. FEBS Lett 440:409–413

    Article  CAS  PubMed  Google Scholar 

  • Van Remmen H, Richardson A (2001) Oxidative damage to mitochondria and aging. Exp Gerontol 36:957–968

    Article  CAS  PubMed  Google Scholar 

  • Vermeglio A, Joliot P (1999) The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol 7:435–440

    Article  CAS  PubMed  Google Scholar 

  • von Jagow G, Link TA (1986) Use of specific inhibitors on the mitochondrial bc1 complex. Methods Enzymol 126:253–271

    Article  Google Scholar 

  • Wang Q, Yu L, Yu CA (2010) Cross-talk between mitochondrial malate dehydrogenase and the cytochrome bc1 complex. J Biol Chem 285:10408–10414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenz T, Covian R, Hellwig P, Macmillan F, Meunier B, Trumpower BL, Hunte C (2007) Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III. J Biol Chem 282:3977–3988

    Article  CAS  PubMed  Google Scholar 

  • Wikstrom MK, Berden JA (1972) Oxidoreduction of cytochrome-B in presence of antimycin. Biochim Biophys Acta 283:403–420

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Esser L, Yu L, Yu CA (2007) Structural basis for the mechanism of electron bifurcation at the quinol oxidation site of the cytochrome bc1 complex. Photosynth Res 92:17–34

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Esser L, Elberry M, Zhou F, Yu L, Yu CA (2008) The road to the crystal structure of the cytochrome bc1 complex from the anoxigenic, photosynthetic bacterium Rhodobacter sphaeroides. J Bioenerg Biomembr 40:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, Yu CA (2013) Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. Biochim Biophys Acta 1827:1278–1294

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Yu L, Yu CA (2000) Confirmation of the involvement of protein domain movement during the catalytic cycle of the cytochrome bc1 complex by the formation of an intersubunit disulfide bond between cytochrome b and the iron-sulfur protein. J Biol Chem 275:38597–38604

    Article  CAS  PubMed  Google Scholar 

  • Xiao KH, Liu XY, Yu CA, Yu L (2004) The extra fragment of the iron-sulfur protein (residues 96–107) of Rhodobacter sphaeroides cytochrome bc(1) complex is required for protein stability. Biochemistry 43:1488–1495

    Article  CAS  PubMed  Google Scholar 

  • Yamashita E, Zhang H, Cramer WA (2007) Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 370:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Trumpower BL (1988) Protonmotive Q cycle pathway of electron transfer and energy transduction in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans. J Biol Chem 263:11962–11970

    CAS  PubMed  Google Scholar 

  • Yang S, Ma HW, Yu L, Yu CA (2008) On the mechanism of quinol oxidation at the QP site in the cytochrome bc1 complex: studied using mutants lacking cytochrome bL or bH. J Biol Chem 283:28767–28776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Tso SC, Yu CA, Yu L (2009) Effect of subunit IV on superoxide generation by Rhodobacter sphaeroides cytochrome bc(1) complex. Biochim Biophys Acta 1787:913–919

    Article  CAS  PubMed  Google Scholar 

  • Yun C, Beci R, Crofts AR, Kaplan S, Gennis RB (1990) Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc1 complex from Rhodobacter sphaeroides. Eur J Biochem 194:399–411

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu L, Yu CA (1998a) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria [in process citation]. J Biol Chem 273:33972–33976

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, …, Kim SH (1998b) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684

    Google Scholar 

  • Zhou F, Yin Y, Su T, Yu L, Yu CA (2012) Oxygen dependent electron transfer in the cytochrome bc(1) complex. Biochim Biophys Acta 1817:2103–2109

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Egawa T, Yeh S, Yu L, Yu CA (2007) Simultaneous reduction of iron-sulfur protein and cytochrome bL during ubiquinol oxidation in cytochrome bc1 complex. Proc Natl Acad Sci U S A 104:4864–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank George Leiman for editorial assistance. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Esser, L., Zhou, F., Yu, CA., Xia, D. (2016). Structure-Function Studies of the Cytochrome bc 1 Complex of Anoxygenic Photosynthetic Purple Bacteria. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_10

Download citation

Publish with us

Policies and ethics