Skip to main content

Cytochrome c 6 of Cyanobacteria and Algae: From the Structure to the Interaction

  • Chapter
  • First Online:
Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Summary

Cytochrome c 6 is a small, globular and soluble hemeprotein—found in algae and cyanobacteria, but not in higher plants—that usually serves as a redox carrier between the cytochrome b 6 f complex and photosystem I in the photosynthetic electron transport chain. In cyanobacteria, in particular, it can also donate electrons to cytochrome c oxidase and can thus serve as a switch between photosynthesis and respiration as these two processes share the same cellular location.

Cytochrome c 6 can be replaced by the blue copper protein plastocyanin in many cyanobacteria and eukaryotic algae, which are all able to synthesize one or the other protein depending on the relative availability of iron and copper. Such a metabolic versatility lets these organisms rapidly adapt to environmental changes. Although the three-dimensional structures of cytochrome c 6 and plastocyanin are evolutionary unrelated, their similar physicochemical properties and surface features make them easily exchangeable within each organism. Plants, however, only synthesize plastocyanin but not cytochrome c 6 as the increase in atmospheric molecular oxygen throughout the Earth’s life made copper more readily available than iron.

This chapter also focuses on cytochrome c 6 and its physiological transient interactions with photosynthetic or respiratory membrane-complexes, namely cytochrome b 6 f, photosystem I and cytochrome c oxidase. In all three cases, an optimal coupling between redox centers within the adducts is essential for electron transfer although the interactions of cytochrome c 6 with its partners must be weak enough to guarantee a rapid turnover. So rather than forming a well-defined system, the two partners adopt multiple conformations within encounter complexes that exchange among them with low activation barriers to eventually yield a final productive orientation. Accordingly, cyanobacterial and algal cytochrome c 6-involving dynamic ensembles result from a balance between hydrophobic contacts and electrostatic interactions, thus allowing cytochrome c 6 to scan the surface of its partner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cb 6 f :

Cytochrome b 6 f

Cc :

Cytochrome c

Cc 6 :

Cytochrome c 6

CcO:

Cytochrome c oxidase

Cf :

Cytochrome f

NDH:

NADPH DeHydrogenase

NMR:

Nuclear magnetic resonance

Pc:

Plastocyanin

PQ:

PlastoQuinone

PRE:

Paramagnetic relaxation enhancement

PSI:

Photosystem I

PSII:

Photosystem II

SDH:

Succinate DeHydrogenase

TROSY:

Transverse relaxation-optimized spectroscopy

References

  • Akazaki H, Kawai F, Chida H, Matsumoto Y, Hirayama M, Hoshikawa K, Unzai S, Hakamata W, Nishio T, Park SY, Oku T (2008) Cloning, expression and purification of cytochrome c(6) from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:674–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini B, Quacquarini G, Walter O, Díaz A, Hervás M, De la Rosa MA (1996) The solution structure of cytochrome c 6 from the green alga Monoraphidium braunii. J Biol Inorg Chem 1:330–340

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, De la Rosa MA, Koulougliotis D, Navarro JA, Walter O (1998) The solution structure of oxidized cytochrome c 6 from the green alga Monoraphidium braunii. Biochemistry 37:4831–4843

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Rosato A (2007) The functions of Sco proteins from genome-based analysis. J Proteome Res 6:1568–1579

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Ciafi-Baffoni S (2011) Seeking the determinants of the elusive functions of Sco proteins. FEBS J 278:2244–2262

    Article  CAS  PubMed  Google Scholar 

  • Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b 6 f complex from Nostoc sp PCC 7120. J Biol Chem 284:9861–9869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beissinger M, Sticht H, Sutter M, Ejchart A, Haehnel W, Rösch P (1998) Solution structure of cytochrome c 6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J 17:27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bialek W, Krzywda S, Jaskolski M, Szczepaniak A (2009) Atomic-resolution structure of reduced cyanobacterial cytochrome c 6 with an unusual sequence insertion. FEBS J 276:4426–4436

    Article  CAS  PubMed  Google Scholar 

  • Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F, Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156:807–813

    Article  CAS  PubMed  Google Scholar 

  • Bottin H, Mathis P (1985) Interaction of plastocyanin with the Photosystem I reaction center: a kinetic study by flash absorption spectroscopy. Biochemistry 24:6453–6460

    Article  CAS  Google Scholar 

  • Casaus JL, Navarro JA, Hervás M, Lostao A, De la Rosa MA, Gómez-Moreno C, Sancho J, Medina M (2002) Anabaena sp. PCC 7119 flavodoxin as electron carrier from photosystem I to Ferredoxin-NADP(+) reductase - Role of Trp57 and Tyr94. J Biol Chem 277:22338–22344

    Article  CAS  PubMed  Google Scholar 

  • Chotia C, Levitt M, Robertson D (1985) Helix to helix packing in proteins. J Mol Biol 145:215–250

    Article  Google Scholar 

  • Cobine PA, Pierrel F, Wing DR (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 1763:759–772

    Article  CAS  PubMed  Google Scholar 

  • Crowley PB, Otting G, Schlarb-Ridley BG, Canters GW, Ubbink M (2001) Hydrophobic interactions in a cyanobacterial plastocyanin–cytochrome f complex. J Am Chem Soc 123:10444–10453

    Article  CAS  PubMed  Google Scholar 

  • Crowley PB, Díaz-Quintana A, Molina-Heredia FP, Nieto P, Sutter M, Haehnel W, De la Rosa MA, Ubbink M (2002) The interactions of cyanobacterial cytochrome c 6 and cytochrome f, characterized by NMR. J Biol Chem 277:48685–48689

    Article  CAS  PubMed  Google Scholar 

  • De la Cerda B, Díaz-Quintana A, Navarro JA, Hervás M, De la Rosa MA (1999) Site-directed mutagenesis of cytochrome c 6 from Synechocystis sp. PCC 6803. The heme-protein possesses a negatively charged area that may be isofunctional with the acidic patch of plastocyanin. J Biol Chem 274:13292–13297

    Article  PubMed  Google Scholar 

  • De la Rosa MA, Navarro JA, Díaz-Quintana A, De la Cerda B, Molina-Heredia FP, Balme A, Murdoch Pdel S, Díaz-Moreno I, Durán RV, Hervás M (2002) An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c6 and plastocyanin. Bioelectrochemistry 55:41–45

    Article  PubMed  Google Scholar 

  • De la Rosa MA, Navarro JA, Hervás M (2011) The convergent evolution of cytochrome c 6 and plastocyanin has been driven by geochemical changes. In: Peschek GA, Obinger C, Renger G (eds) Bioenergetic Processes of Cyanobacteria. Springer, Drodrecht

    Google Scholar 

  • Díaz A, Navarro F, Hervás M, Navarro JA, Chávez S, Florencio FJ, De la Rosa MA (1994a) Cloning and correct expression in Escherichia coli of the petJ gene encoding cytochrome c 6 from Synechocystis 6803. FEBS Lett 347:173–177

    Article  PubMed  Google Scholar 

  • Díaz A, Hervás M, Navarro JA, De la Rosa MA, Tollin G (1994b) A thermodynamic study by laser-flash photolysis of plastocyanin and cytochrome c 6 oxidation by photosystem I from the green alga Monoraphidium braunii. Eur J Biochem 222:1001–1007

    Article  PubMed  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, Ubbink M, De la Rosa MA (2005a) An NMR-based docking model for the physiological transient complex between cytochrome f and cytochrome c 6. FEBS Lett 579:2891–2896

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, Molina-Heredia FP, Nieto PM, Hansson O, De la Rosa MA, Karlsson BG (2005b) NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c 6. J Biol Chem 280:7925–7931

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA, Crowley PB, Ubbink M (2005c) Different modes of interaction in cyanobacterial complexes of plastocyanin and cytochrome f. Biochemistry 44:3176–3183

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA, Ubbink M (2005d) Structure of the complex between plastocyanin and cytochrome f from the cyanobacterium Nostoc sp. PCC 7119 as determined by paramagnetic NMR: the balance between electrostatic and hydrophobic interactions within the transient complex determines the relative orientation of the two proteins. J Biol Chem 280:18908–18915

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, Subías G, Mairs T, De la Rosa MA, Díaz-Moreno S (2006a) Detecting transient protein–protein interactions by X-ray absorption spectroscopy: the cytochrome c 6-photosystem I complex. FEBS Lett 580:3023–3028

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Moreno I, Díaz-Moreno S, Subías G, De la Rosa MA, Díaz-Quintana A (2006b) The atypical iron-coordination geometry of cytochrome f remains unchanged upon binding to plastocyanin, as inferred by XAS. Photosynth Res 90:23–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz-Moreno I, García-Heredia JM, Díaz-Quintana A, Teixeira M, De la Rosa MA (2011) Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin. Biochim Biophys Acta – Bioenerg 1807:1616–1623

    Article  CAS  Google Scholar 

  • Díaz-Moreno I, Hulsker R, Skubak P, Foerster JM, Cavazzini D, Finiguerra MG, Díaz-Quintana A, Moreno-Beltrán B, Rossi GL, Ullmann GM, Pannu NS, De la Rosa MA, Ubbink M (2014) The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy. Biochim Biophys Acta 1837:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Quintana A, Navarro JA, Hervás M, Molina-Heredia FP, De la Cerda B, De la Rosa MA (2003) A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c 6 as alternative electron donors to photosystem I. Photosynth Res 75:97–110

    Article  PubMed  Google Scholar 

  • Díaz-Quintana A, Hervás M, Navarro JA, De la Rosa MA (2008) Plastocyanin and cytochrome c 6: the soluble electron carriers between the cytochrome b 6 f complex and photosystem I. In: Fromme P (ed) Photosynthetic Protein Complexes: A Structural Approach. Wiley-Blackwell, Weinheim, pp 181–200

    Chapter  Google Scholar 

  • Dikiy A, Carpentier W, Vandenberghe I, Borsari M, Safarov N, Dikaya E, Van Beeumen J, Ciurli S (2002) Structural basis for the molecular properties of cytochrome c 6. Biochemisry 17:14689–14699

    Article  CAS  Google Scholar 

  • Drepper F, Hippler M, Nitschke W, Haehnel W (1996) Binding dynamics and electron transfer between plastocyanin and Photosystem I. Biochemistry 35:1282–1295

    Article  CAS  PubMed  Google Scholar 

  • Durán RV, Hervás M, De la Rosa MA, Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c 6 or plastocyanin. J Biol Chem 279:7229–7233

    Article  PubMed  CAS  Google Scholar 

  • Flöck D, Helms V (2002) Protein-protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c. Proteins 47:75–85

    Article  PubMed  CAS  Google Scholar 

  • Frazão C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervás M, Navarro JA, De la Rosa MA, Sheldrick GM (1995) Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 3:1159–1169

    Article  PubMed  Google Scholar 

  • Frazao C, Enguita FJ, Coelho R, Sheldrick GM, Navarro JA, Hervás M, De la Rosa MA, Carrondo MA (2001) Crystal structure of low-potential cytochrome c 549 from Synechocystis sp. PCC 6803 at 1.21 angstrom resolution. J Biol Inorg Chem 6:324–332

    Article  CAS  PubMed  Google Scholar 

  • García-Heredia JM, Díaz-Moreno I, Nieto PM, Orzáez M, Kocanis S, Teixeira M, Pérez-Payá E, Díaz-Quintana A, De la Rosa MA (2010) Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation. Biochim Biophys Acta 1797:981–993

    Article  PubMed  CAS  Google Scholar 

  • García-Heredia JM, Díaz-Quintana A, Salzano M, Orzáez M, Pérez-Payá E, Teixeira M, De la Rosa MA, Díaz-Moreno I (2011) Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J Biol Inorg Chem 16:1155–1168

    Article  PubMed  CAS  Google Scholar 

  • García-Heredia JM, Díaz-Moreno I, Díaz-Quintana A, Orzáez M, Navarro JA, Hervás M, De la Rosa MA (2012) Specific nitration of tyrosines 46 and 48 makes cytochrome c assemble a non-functional apoptosome. FEBS Lett 586:154–158

    Article  PubMed  CAS  Google Scholar 

  • Gross EL, Pearson DC (2003) Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c 6. Biophys J 85:2055–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove TZ, Kostic NM (2003) Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c 6 from Chlamydomonas reinhardtii. J Am Chem Soc 125:10598–10607

    Article  CAS  PubMed  Google Scholar 

  • Grove TZ, Ullmann GM, Kostic NM (2012) Simultaneous true, gated, and coupled electron-transfer reactions and energetics of protein rearrangement. J Inorg Biochem 106:143–150

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, He ZY, Luan S (2002) Functional relationship of cytochrome c 6 and plastocyanin in Arabidopsis. Nature 417:567–571

    Article  CAS  PubMed  Google Scholar 

  • Haddadian EJ, Gross EL (2005) Brownian dynamics study of cytochrome f interactions with cytochrome c 6 and plastocyanin in Chlamydomonas reinhardtii plastocyanin, and cytochrome c 6 mutants. Biophys J 88:2323–2339

    Article  CAS  PubMed  Google Scholar 

  • Haddadian EJ, Gross EL (2006) A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c 6 and plastocyanin in Chlamydomonas reinhardtii. Biophys J 90:566–577

    Article  CAS  PubMed  Google Scholar 

  • Harrenga A, Michel H (1999) The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction. J Biol Chem 274:33296–33299

    Article  CAS  PubMed  Google Scholar 

  • Hart SE, Schlarb-Ridley BG, Delon C, Bendall DS, Howe CJ (2003) Role of charges on cytochrome f from the cyanobacterium Phormidium laminosum in its interaction with plastocyanin. Biochemistry 42:4829–4836

    Article  CAS  PubMed  Google Scholar 

  • Hart SE, Howe CJ, Mizuguchi K, Fernandez-Recio J (2008) Docking of cytochrome c 6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum. Protein Eng Des Sel 21:689–698

    Article  CAS  PubMed  Google Scholar 

  • Hazzard JT, Rong SY, Tollin G (1991) Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase. Biochemistry 30:213–222

    Article  CAS  PubMed  Google Scholar 

  • Herrmann JM, Funes S (2005) Biogenesis of cytochrome oxidase-sophisticated assembly lines in the mitochondrial inner membrane. Gene 354:43–52

    Article  CAS  PubMed  Google Scholar 

  • Hervás M, De la Rosa MA, Tollin G (1992) A comparative laser flash photolysis study of algal plastocyanin and cytochrome c 552 photooxidation by Photosystem I particles. Eur J Biochem 203:115–120

    Article  PubMed  Google Scholar 

  • Hervás M, Ortega JM, Navarro JA, De la Rosa MA, Bottin H (1994) Laser flash kinetic analysis of Synechocystis PCC 6803 cytochrome c 6 and plastocyanin oxidation by PSI. Biochim Biophys Acta 1184:235–241

    Article  Google Scholar 

  • Hervás M, Navarro JA, Díaz A, Bottin H, De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c 6 to PSI. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34:11321–11326

    Article  PubMed  Google Scholar 

  • Hervás M, Navarro JA, Díaz A, De la Rosa MA (1996) A comparative thermodynamic analysis by laser-flash absorption spectroscopy of plastocyanin and cytochrome c 6 oxidation by Photosystem I in Anabaena PCC 7119, Synechocystis PCC 6803 and spinach. Biochemistry 35:2693–2698

    Article  PubMed  Google Scholar 

  • Hervás M, Navarro JA, Molina-Heredia FP, De la Rosa MA (1998) The reaction mechanism of Photosystem I reduction by plastocyanin and cytochrome c 6 follows two different kinetic models in the cyanobacterium Pseudanabaena sp. PCC 6903. Photosynth Res 57:93–100

    Article  Google Scholar 

  • Hervás M, Navarro JA, De la Rosa MA (2003) Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 36:798–805

    Article  PubMed  CAS  Google Scholar 

  • Hervás M, Díaz-Quintana A, Kerfeld CA, Krogmann DW, De la Rosa MA, Navarro JA (2005) Cyanobacterial Photosystem I lacks specificity in its interaction with cytochrome c 6 electron donors. Photosynth Res 83:329–333

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T, Ke B (1972) Difference spectra and extinction coefficient of P700. Biochim Biophys Acta 267:160–171

    Article  CAS  PubMed  Google Scholar 

  • Hope AB (2000) Electron transfer amongst cytochrome f, plastocyanin and Photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Krogmann DW, Yeates TO (2002) Structure of cytochrome c 6 from Arthrospira maxima: an assembly of 24 subunits in a nearly symmetric shell. Acta Crystallogr Sect D 58:1104–1110

    Article  CAS  Google Scholar 

  • Kerfeld CA, Anwar HP, Interrante R, Merchant S, Yeates TO (1995) The structure of chloroplast cytochrome c 6 at 1.9 Å resolution: evidence for functional oligomerization. J Mol Biol 250:627–647

    Article  CAS  PubMed  Google Scholar 

  • Koepke J, Angerer H, Peng G (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. Biochim Biophys Acta 1787:635–645

    Article  CAS  PubMed  Google Scholar 

  • Kranich A, Naumann H, Molina-Heredia FP, Moore HJ, Lee TR, Lecomte S, de la Rosa MA, Hildebrandt P, Murgida DH (2009) Gated electron transfer of cytochrome c6 at biomimetic interfaces: a time-resolved SERR study. Phys Chem Chem Phys 11:7390–7397

    Article  CAS  PubMed  Google Scholar 

  • Kuhlgert S, Drepper F, Fufezan C, Sommer F, Hippler M (2012) Residues PsaB Asp612 and PsaB Glu613 of photosystem I confer pH dependent binding of plastocyanin and cytochrome c 6. Biochemistry 51:7297–7303

    Article  CAS  PubMed  Google Scholar 

  • Kurisu G, Zhang HM, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange C, Hervás M, De la Rosa MA (2003) Analysis of the stability of cytochrome c 6 with an improved stopped-flow protocol. Biochem Biophys Res Commun 310:215–221

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen P, Aasa R, Malmström BG, Saraste M (1993) Soluble CuA-binding domain from the Paracoccus cytochrome c oxidase. J Biol Chem 268:26416–26421

    CAS  PubMed  Google Scholar 

  • Liu B, Chen Y, Doukov T, Soltis SM, Stout CD, Fee JA (2009) Combined microspectrophotometric and crystallographic examination of chemically reduced and X-ray radiation-reduced forms of cytochrome ba3 oxidase from Thermus thermophilus: structure of the reduced form of the enzyme. Biochemistry 48:820–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna VM, Fee JA, Deniz AA, Stout CD (2012) Mobility of Xe atoms within the oxygen diffusion channel of cytochrome ba3 oxidase. Biochemistry 51:4669–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly HK, Utesch T, Díaz-Moreno I, García-Heredia JM, De La Rosa MA, Hildebrandt P (2012) Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration. J Phys Chem B 116:5694–5702

    Article  CAS  PubMed  Google Scholar 

  • Lyons JA, Aragao D, Slattery O, Pisliakov AV, Soulimane T, Caffrey M (2012) Structural insights into electron transfer in caa3-Type cytochrome oxidases. Nature 487:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maneg O, Ludwig B, Malatesta F (2003) Different interaction modes of two cytochrome-c oxidase soluble CuA fragments with their substrates. J Biol Chem 278:46734–46740

    Article  CAS  PubMed  Google Scholar 

  • Maneg O, Malatesta F, Ludwig B, Drosou V (2004) Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim Biophys Acta 1655:274–281

    Article  CAS  PubMed  Google Scholar 

  • Marcaida MJ, Schlarb-Ridley BG, Worrall JA, Wastl J, Evans TJ, Bendall DS, Luisi BF, Howe CJ (2006) Structure of cytochrome c 6A, a novel dithio-cytochrome of Arabidopsis thaliana, and its reactivity with plastocyanin: implications for function. J Mol Biol 360:968–977

    Article  CAS  PubMed  Google Scholar 

  • Martínez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL (1994) Crystal-structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2:95–105

    Article  PubMed  Google Scholar 

  • Mathis P, Sétif P (1981) Near infra-red absorption spectra of the chlorophyll cations and triplet state in vitro and in vivo. Isr J Chem 21:316–320

    Article  CAS  Google Scholar 

  • Matouschek A, Fersht AR (1993) Application of physical organic-chemistry to engineered mutants of proteins — Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci USA 90:7814–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazor Y, Nataf D, Toporik H, Nelson N (2013) Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLIFE 3, e01496

    PubMed  Google Scholar 

  • Medina M, Hervás M, Navarro JA, De la Rosa MA, Gómez-Moreno C, Tollin G (1992) A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS Lett 313:239–242

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Díaz A, Hervás M, Navarro JA, Gómez-Moreno C, De la Rosa MA, Tollin G (1993) A comparative laser-flash absorption-spectroscopy study of Anabaena PCC-7119 plastocyanin and cytochrome c 6 photooxidation by Photosystem-I particles. Eur J Biochem 213:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA (1998) Cloning and correct expression in Escherichia coli of the petE and petJ genes respectively encoding plastocyanin and cytochrome c 6 from the cyanobacterium Anabaena sp. PCC 7119. Biochem Biophys Res 243:302–306

    Article  CAS  Google Scholar 

  • Molina-Heredia FP, Díaz-Quintana A, Hervás M, Navarro JA, De la Rosa MA (1999) Site-directed mutagenesis of cytochrome c 6 from Anabaena species PCC 7119 - Identification of surface residues of the hemeprotein involved in photosystem I reduction. J Biol Chem 274:33565–33570

    Article  CAS  PubMed  Google Scholar 

  • Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA (2001) A single arginyl residue in plastocyanin and in cytochrome c 6 from the cyanobacterium Anabaena sp. PCC 7119 is required for efficient reduction of photosystem I. J Biol Chem 276:601–605

    Article  CAS  PubMed  Google Scholar 

  • Molina-Heredia FP, Wastl J, Navarro JA, Bendall DS, Hervás M, Howe CJ, De la Rosa MA (2003) A new function for an old cytochrome? Nature 424:33–34

    Article  CAS  PubMed  Google Scholar 

  • Moore GR, Pettigrew GW (1990) Cytochromes c — Evolutionary, Structural and Physichochemical Aspects. Springer, Heidelberg

    Book  Google Scholar 

  • Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci USA 104:7881–7886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muresanu L, Pristovsek P, Löhr F, Maneg O, Mukrasch MD, Rüterjans H, Ludwig B, Lücke C (2006) The electron transfer complex between cytochrome c 552 and the CuA domain of the Thermus thermophilus ba3 oxidase. A combined NMR and computational approach. J Biol Chem 281:14503–14513

    Article  CAS  PubMed  Google Scholar 

  • Navarro JA, Hervás M, De la Cerda B, De la Rosa MA (1995) Purification and physicochemical properties of the low-potential cytochrome c 549 from the cyanobacterium Synechocystis sp. PCC 6803. Arch Biochem Biophys 318:46–52

    Article  CAS  PubMed  Google Scholar 

  • Navarro JA, Durán RV, De la Rosa MA, Hervás M (2005) Respiratory cytochrome c oxidase can be efficiently reduced by the photosynthetic redox proteins cytochrome c 6 and plastocyanin in cyanobacteria. FEBS Lett 579:3565–3568

    Article  CAS  PubMed  Google Scholar 

  • Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J Comput Chem 12:435–445

    Article  CAS  Google Scholar 

  • Obinger C, Knepper JC, Zimmermann U, Peschek GA (1990) Identification of a periplasmic C-type cytochrome as electron donor to the plasma membrane-bound cytochrome oxidase of the cyanobacterium Nostoc. Biochem Biophys Res Commun 169:492–501

    Article  CAS  PubMed  Google Scholar 

  • Olesen K, Ejdebäck M, Crnogorac MM, Kostic NM, Hansson Ö (1999) Electron transfer to photosystem 1 from spinach plastocyanin mutated in the small acidic patch: ionic strength dependence of kinetics and comparison of mechanistic models. Biochemistry 38:16695–16705

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci USA 94:10547–10553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paumann M, Feichtinger M, Bernroitner M, Goldfuhs J, Jakopitsch C, Furtmüller PG, Regelsberger G, Peschek GA, Obinger C (2004) Kinetics of interprotein electron transfer between cytochrome c6 and the soluble CuA domain of cyanobacterial cytochrome c oxidase. FEBS Lett 576:101–106

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci USA 103:16117–16122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Mills DA, Proshlyakov DA, Hiser C, Ferguson-Miller S (2009) Redox dependent conformational changes in cytochrome c oxidase suggest a gating mechanism for proton uptake. Biochemistry 48:5121–5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. J Biol Chem 274:38051–38060

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Roldán V, García-Heredia JM, Navarro JA, De la Rosa MA, Hervás M (2008) A comparative kinetic analysis of the reactivity of plant, horse, and human respiratory cytochrome c towards cytochrome c oxidase. Biochemistry 47:12371–12379

    Article  PubMed  CAS  Google Scholar 

  • Schlarb-Ridley BG, Navarro JA, Spencer M, Bendall DS, Hervás M, Howe CJ, De la Rosa MA (2002a) Role of electrostatics in the interaction between plastocyanin and photosystem I of the cyanobacterium Phormidium laminosum. Eur J Biochem 269:5893–5902

    Article  CAS  PubMed  Google Scholar 

  • Schlarb-Ridley BG, Bendall DS, Howe CJ (2002b) Role of electrostatics in the interaction between cytochrome f and plastocyanin of the cyanobacterium Phormidium laminosum. Biochemistry 41:3279–3285

    Article  CAS  PubMed  Google Scholar 

  • Seib KL, Jennings MP, McEwan AG (2003) A Sco homologue plays a role in defence against oxidative stress in pathogenic Neisseria. FEBS Lett 546:411–415

    Article  CAS  PubMed  Google Scholar 

  • Sigfridsson K, Hansson Ö, Karlsson BG, Baltzer L, Nordling M, Lundberg LG (1995) Spectroscopic and kinetic characterization of the spinach plastocyanin mutant Tyr83-His: a histidine residue with a high pKa value. Biochim Biophys Acta 1228:28–36

    Article  Google Scholar 

  • Schnackenberg J, Than ME, Mann K, Wiegand G, Huber R, Reuter W (1999) Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c 6 from the green alga Scenedesmus obliquus. J Mol Biol 290:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Sommer F, Drepper F, Haehnel W, Hippler M (2004) The hydrophobic recognition site formed by residues PsaA-Trp651 and PsaB-Trp627 of photosystem I in Chlamydomonas reinhardtii confers distinct selectivity for binding of plastocyanin and cytochrome c6. J Biol Chem 279:20009–20017

    Article  CAS  PubMed  Google Scholar 

  • Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J 19:1766–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan V, Rajendran C, Sousa FL, Melo AM, Saraiva LM, Pereira MM, Santana M, Teixeira M, Michel H (2005) Structure at 1.3 A resolution of Rhodothermus marinus caa(3) cytochrome c domain. J Mol Biol 345:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Yano N, Muramoto K, Shinzawa-Itoh K, Maeda T, Yamashita E, Tsukihara T, Yoshikawa S (2011) Distinguishing between Cl- and O2 2- as the bridging element between Fe3+ and Cu2+ in resting-oxidized cytochrome c oxidase. Acta Crystallogr 67:742–744

    CAS  Google Scholar 

  • Sun J, Xu W, Hervás M, Navarro JA, De la Rosa MA, Chitnis PR (1999) Oxidising side of the cyanobacterial Photosystem I. Evidence for interaction between the electron donor proteins and a luminal surface helix of the PsaB subunit. J Biol Chem 274:19048–19054

    Article  CAS  PubMed  Google Scholar 

  • Suzek BBE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brezezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  CAS  PubMed  Google Scholar 

  • Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V (2011) High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. Plos One 6:e22348–e22348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollin G, Meyer T, Cusanovich MA (1986) Elucidation of the factors which determine reaction-rate constants and biological specificity for electron transfer proteins. Biochim Biophys Acta 853:29–41

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci U S A 100:15304–15309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhen Y, Sadoski R, Grinnell S, Geren L, Ferguson-Miller S, Durham W, Millett F (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. II Rapid kinetic analysis of electron transfer from cytochrome c to Rhodobacter sphaeroides cytochrome oxidase surface mutants. J Biol Chem 274:38042–38050

    Google Scholar 

  • Watkins JA, Cusanovich MA, Meyer TE, Tollin G (1994) A ‘parallel plate’ electrostatic model of bimolecular rate constants applied to electron transfer proteins. Protein Sci 3:2104–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PA, Blackburn NJ, Sanders D, Bellamy H, Stura EA, Fee JA, McRee DE (1999) The CuA domain of Thermus thermophilus ba3-type cytochrome c oxidase at 1.6 Å resolution. Nat Struct Biol 6:509–516

    Article  CAS  PubMed  Google Scholar 

  • Worrall JA, Schlarb-Ridley BG, Reda T, Marcaida MJ, Moorlen RJ, Wastl J, Hirst J, Bendall DS, Luisi BF, Howe CJ (2007) Modulation of heme redox potential in the cytochrome c6 family. J Am Chem Soc 129:9468–9475

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Park SY, Shimizu H, Koshizuka Y, Kadokura K, Satoh T, Suruga K, Ogawa M, Isogai Y, Nishio T, Shiro Y, Oku T (2000) Structure of cytochrome c6 from the red alga Porphyra yezoensis at 1. 57 A resolution. Acta Crystallogr D Biol Crystallogr 56:1577–1582

    Article  CAS  PubMed  Google Scholar 

  • Yoneda GS, Holwerda RA (1978) Kinetics of the oxidation of Rhus vernicifera stellacyanin by the Co(EDTA)– ion. Bioinorg Chem 8:139–159

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all former and present members of the Biointeractomics group at the Institute for Plant Biochemistry and Photosynthesis (cicCartuja, University of Seville—CSIC). We also thank to Prof. Helms, Prof. Roberts and Prof. Fernández-Recio for providing us the coordinates of Paracoccus c 552-CcO, Cc-CcO and Cc 6-CcO complexes, respectively. Financial support was provided by the Spanish Ministry of Economy and Competitiveness for several years (Grant No. BFU2003-00458/BMC, BFU2006-01361/BMC, BFU2009-07190/BMC and BFU2012-31670/BMC), by Ramon Areces Foundation and by the Andalusian Government (Grant PAI, BIO198, P07-CVI-02896 and P11-CVI-7216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Díaz-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Díaz-Moreno, I., Díaz-Quintana, A., De la Rosa, M.A. (2016). Cytochrome c 6 of Cyanobacteria and Algae: From the Structure to the Interaction. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_31

Download citation

Publish with us

Policies and ethics