Skip to main content

Genetic Alternations in Common Cancers

  • Chapter
  • First Online:
Principles of Cancer Genetics
  • 2410 Accesses

Abstract

Each of the roughly 100 types of human cancer is caused by the activation of proto-oncogenes and the loss of tumor suppressor genes. Although cancer genomes are complex, some clear mutational patterns are apparent. Several cancer genes are observed very frequently in some types of cancer, but rarely found in other types. Other cancer genes are much more widespread across many types of cancer. Analysis of many cancer genomes has shown that nearly 150 genes are recurrently altered by mutations to provide tumor cells a selective growth advantage. These studies have shown that there are many potential combinations of cancer genes that can cooperatively allow the growth of different types of neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Agrawal N et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn SM et al (2014) Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60:1972–1982

    Article  CAS  PubMed  Google Scholar 

  • Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Research Network (2012a) Comprehensive molecular portraits of human breast tumors. Nature 490:61–70

    Article  Google Scholar 

  • Cancer Genome Atlas Research Network (2012b) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Google Scholar 

  • Cancer Genome Atlas Research Network (2013a) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074

    Article  Google Scholar 

  • Cancer Genome Atlas Research Network (2013b) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49

    Article  Google Scholar 

  • Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550

    Article  Google Scholar 

  • de Snoo FA, Hayward NK (2005) Cutaneous melanoma susceptibility and progression genes. Cancer Lett 230:153–186

    Article  PubMed  Google Scholar 

  • Ellenson LH, Wu TC (2004) Focus on endometrial and cervical cancer. Cancer Cell 5:533–538

    Article  CAS  PubMed  Google Scholar 

  • El-Rifai W, Powell SM (2002) Molecular biology of gastric cancer. Semin Radiat Oncol 12:128–140

    Article  PubMed  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    Article  CAS  PubMed  Google Scholar 

  • Gao JJ et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:l1

    Article  Google Scholar 

  • Grasso CS et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haluska FG et al (2006) Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 12:2301s–2307s

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Schwank J, Staib F, Wang XW, Harris CC (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166–2176

    Article  CAS  PubMed  Google Scholar 

  • Iyer G et al (2013) Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol 31:3133–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kangelaris KN, Gruber SB (2007) Clinical implications of founder and recurrent CDH1 mutations in hereditary diffuse gastric cancer. JAMA 297:2410–2411

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306

    Article  CAS  PubMed  Google Scholar 

  • Linehan WM, Walther MM, Zbar B (2003) The genetic basis of cancer of the kidney. J Urol 170:2163–2172

    Article  CAS  PubMed  Google Scholar 

  • Munger K et al (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78:11451–11460

    Article  PubMed  PubMed Central  Google Scholar 

  • Northcott PA et al (2011) Medulloblastoma comprises four distinct molecular variants. JCO 29:1408–1414

    Article  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudin CM et al (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshagiri S et al (2012) Recurrent R-spondin fusions in colon cancer. Nature 488:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  • Wang K et al (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 46:573–582

    Article  CAS  PubMed  Google Scholar 

  • Warnakulasuriya KA, Ralhan R (2007) Clinical, pathological, cellular and molecular lesions caused by oral smokeless tobacco – a review. J Oral Pathol Med 36:63–77

    Article  CAS  PubMed  Google Scholar 

  • Wood LD et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bunz, F. (2016). Genetic Alternations in Common Cancers. In: Principles of Cancer Genetics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7484-0_7

Download citation

Publish with us

Policies and ethics