Skip to main content

The Annual Cycle Under Changing Climatic Conditions

  • Chapter
  • First Online:
Boreal and Temperate Trees in a Changing Climate

Part of the book series: Biometeorology ((BIOMET))

Abstract

The hypothetico-deductive modelling framework introduced in Chap. 2 is applied to examining the effects of climatic change on the annual cycle of boreal and temperate trees. Most emphasis is devoted to the paradoxical hypothesis that climatic warming will increase the incidence of frost damage in these trees. According to early computer simulations, trees in boreal conditions in particular would deharden and even start to grow during such mild spells in winter as are commonly projected to prevail in the future climate, so that serious damage would result during subsequent periods of frost. Empirical tests of the frost damage hypothesis suggest that the catastrophic frost damage projected in the early computer simulations will not be realised. Even so, the frost damage hypothesis cannot be ruled out. Available experimental evidence remains limited, and theoretical work with computer simulations has shown that relatively small changes in the ecophysiological traits of trees may cause premature dehardening and growth onset during mild spells in the scenario climate. There have also been several reports of considerable frost damage to boreal and temperate trees and other plants in natural conditions after unseasonally warm spells in winter even in the present climate. For these reasons, nothing conclusive can be said about the frost damage hypothesis. However, the research discussed in this and other chapters of the present volume has pointed out not only the ecophysiological traits of the trees that are critical for the frost damage hypothesis but also the experimental designs that facilitate the determining of those traits in any tree population. Overall, the importance of ecophysiological realism and continuous critical testing of the models are emphasised. Finally, the implications of the effects of climatic change on tree seasonality to the stand and ecosystem level are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The three sub-models forming the overall model are described in detail in Sects. 3.2.1.4, 3.3.2.2, and 3.4.1.1.

  2. 2.

    The approach is similar to that presented in Sect. 6.3.4, where the adaptation of different tree genotypes to the current climate was examined.

  3. 3.

    In these diagnostic simulations, carried out at the whole-tree level only, the effects of the projected frost damage on the subsequent development of the trees were not addressed. Instead, a new annual cycle of frost hardiness was simulated even in cases where lethal frost damage had been projected. This diagnostic approach is mainly followed throughout this chapter. It goes without saying that when frost hardiness models are used as sub-models of large stand and ecosystem models, mortality and other, less drastic effects of frost damage on the subsequent development of the trees need to be addressed explicitly (Kellomäki et al. 1995; Kramer and Hänninen 2009; Chap. 7, Sect. 8.5.2).

  4. 4.

    Cannell and Smith’s (1983) model is discussed in Sect. 3.4.6.5.

  5. 5.

    Following the convention introduced in Sect. 3.2.1, the concept of “high temperature requirement of growth onset” is used here for the sake of uniformity even though Murray et al. (1989) specified the visible activation of the apical meristems as bud burst.

  6. 6.

    Murray et al. (1989) did not consider the night-length requirement of rest completion evidently existing in Fagus sylvatica, so that the high chilling requirement they found for this species may partially reflect the delaying effects of long nights on rest break. See Sect. 3.3.3.

  7. 7.

    These models are discussed in Sects. 3.4.1 and 3.4.6.5 and the phenological approach in Sect. 3.4.6.1.

  8. 8.

    The three sub-models forming the overall model are described in detail in Sects. 3.2.1.4, 3.3.2.2, and 3.4.1.1.

  9. 9.

    In order to check the consistency of the results, a sensitivity analysis was carried out by using, in addition to the −8 °C, five alternative temperatures in the range of −5 to −10 °C as the threshold for killing frost. Use of the alternative threshold temperatures did not change the conclusions of the study.

  10. 10.

    The contribution of Heikki Smolander is acknowledged here. He made this important point though he did not otherwise participate in the study.

  11. 11.

    Unfortunately, Leinonen’s (1996) model has not been subjected to any such test in elevated temperature conditions as falsified Kellomäki et al.’s (1992, 1995) model (Fig. 8.16). However, a preliminary version of Leinonen’s (1996) model was found to predict the needle frost hardiness quite accurately in elevated temperature conditions, too (Leinonen et al. 1996). This provides some support for the projection of Leinonen’s (1996) model, i.e., for the projection that climatic warming will not increase the incidence of frost damage in boreal coniferous trees. It goes without saying, though, that ultimately the projections of Leinonen’s (1996) model, too, should be examined by testing the model in elevated temperature conditions.

  12. 12.

    The valuation of environmental changes is ultimately a philosophical, not a scientific issue. Many environmentalists consider any human-induced environmental change negative by definition.

  13. 13.

    The model of the annual cycle of photosynthetic capacity is discussed in Sect. 4.2.1.2.

References

  • Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–372.

    Article  Google Scholar 

  • Augspurger, C. K. (2013). Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology, 94, 41–50.

    Article  Google Scholar 

  • Bach, W. (1987). Development of climatic scenarios: A. From general circulation models. In M. L. Parry, T. R. Carter, & N. T. Konijn (Eds.), The impact of climatic variations on agriculture (Assessment in cool temperate and cold regions, Vol. 1, pp. 125–157). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R., & Latour, J. B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8, 390–407.

    Article  Google Scholar 

  • Bartelt, P., & Lehning, M. (2002). A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model. Cold Regions Science and Technology, 35, 123–145.

    Article  Google Scholar 

  • Barton, C. V. M., Ellsworth, D. S., Medlyn, B. E., Duursma, R. A., Tissue, D. T., Adams, M. A., Eamus, D., Conroy, J. P., McMurtrie, R. E., Parsby, J., & Linder, S. (2010). Whole-tree chambers for elevated atmospheric CO2 experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment. Agricultural and Forest Meteorology, 150, 941–951.

    Article  Google Scholar 

  • Basler, D., & Körner, C. (2012). Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165, 73–81.

    Article  Google Scholar 

  • Bergh, J., Freeman, M., Sigurdsson, B., Kellomäki, S., Laitinen, K., Niinistö, S., Peltola, H., & Linder, S. (2003). Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. Forest Ecology and Management, 183, 327–340.

    Article  Google Scholar 

  • Berglund, B. E. (Ed.). (1986). Handbook of Holocene palaeoecology and palaeohydrology. Chichester: Wiley. 869 p.

    Google Scholar 

  • Beuker, E. (1994). Long‐term effects of temperature on the wood production of Pinus sylvestris L. and Picea abies (L.) Karst. in old provenance experiments. Scandinavian Journal of Forest Research, 9, 35–45.

    Article  Google Scholar 

  • Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V., & Phoenix, G. K. (2009). Winter warming events damage sub-arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology, 97, 1408–1415.

    Article  Google Scholar 

  • Bradley, B. A. (2009). Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology, 15, 196–208.

    Article  Google Scholar 

  • Caffarra, A. (2007). Quantifying the environmental drivers of tree phenology. Thesis submitted for the degree of Doctor of Philosophy. School of Natural Sciences, Trinity College, University of Dublin.

    Google Scholar 

  • Caffarra, A., & Donnelly, A. (2011). The ecological significance of phenology in four different tree species: Effects of light and temperature on bud burst. International Journal of Biometeorology, 55, 711–721.

    Article  Google Scholar 

  • Caffarra, A., Donnelly, A., Chuine, I., & Jones, M. B. (2011). Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: A conceptual model. Climate Research, 46, 147–157.

    Article  Google Scholar 

  • Campbell, R. K. (1978). Regulation of bud-burst timing by temperature and photoregime during dormancy. In C. A. Hollis & A. E. Squillace (Eds.), Proceedings: Fifth north American forest biology workshop (pp. 19–33). Gainesville: Forestry Department, University of Florida.

    Google Scholar 

  • Campbell, R. K., & Sugano, A. I. (1975). Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling, and flushing temperature. Botanical Gazette, 136, 290–298.

    Article  Google Scholar 

  • Campbell, R. K., & Sugano, A. I. (1979). Genecology of bud-burst phenology in Douglas-fir: Response to flushing temperature and chilling. Botanical Gazette, 140, 223–231.

    Article  Google Scholar 

  • Cannell, M. G. R. (1985). Analysis of risks of frost damage to forest trees in Britain. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 153–166). Helsinki: Helsinki University Press.

    Google Scholar 

  • Cannell, M. G. R., & Smith, R. I. (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 20, 951–963.

    Article  Google Scholar 

  • Cannell, M. G. R., & Smith, R. I. (1986). Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology, 23, 177–191.

    Google Scholar 

  • Ceulemans, R., & Mousseau, M. (1994). Effects of elevated atmospheric CO2 on woody plants. New Phytologist, 127, 425–446.

    Article  Google Scholar 

  • Cooke, J. E. K., Eriksson, M. E., & Junttila, O. (2012). The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant, Cell and Environment, 35, 1707–1728.

    Article  CAS  Google Scholar 

  • Cooper, E. J. (2014). Warmer shorter winters disrupt arctic terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45, 271–295.

    Google Scholar 

  • Desprez-Loustau, M.-L., Robin, C., Raynaud, G., Déqué, M., Badeau, V., Piou, D., Husson, C., & Marçais, B. (2007). Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Canadian Journal of Plant Pathology, 29, 101–120.

    Google Scholar 

  • Fu, Y. H., Campioli, M., Deckmyn, G., & Janssens, I. A. (2012). The impact of winter and spring temperatures on temperate tree budburst dates: Results from an experimental climate manipulation. PLoS One, 7(10), e47324. doi:10.1371/journal.pone.0047324.

    Article  CAS  Google Scholar 

  • Fu, Y. H., Campioli, M., Deckmyn, G., & Janssens, I. A. (2013). Sensitivity of leaf unfolding to experimental warming in three temperate tree species. Agricultural and Forest Meteorology, 181, 125–132.

    Article  Google Scholar 

  • Fu, Y. H., Piao, S., Vitasse, Y., Zhao, H., De Boeck, H. J., Liu, Q., Yang, H., Weber, U., Hänninen, H., & Janssens, I. A. (2015a). Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: Effects of chilling, precipitation and insolation. Global Change Biology, 21, 2687–2697.

    Article  Google Scholar 

  • Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., & Janssens, I. A. (2015b). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104–107.

    Article  CAS  Google Scholar 

  • Gu, L., Hanson, P. J., Post, W. M., Kaiser, D. P., Yang, B., Nemani, R., Pallardy, S. G., & Meyers, T. (2008). The 2007 eastern US spring freeze: Increased cold damage in a warming world? BioScience, 58, 253–262.

    Article  Google Scholar 

  • Guak, S., Olsyzk, D. M., Fuchigami, L. H., & Tingey, D. T. (1998). Effects of elevated CO2 and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiology, 18, 671–679.

    Article  Google Scholar 

  • Häkkinen, R., Linkosalo, T., & Hari, P. (1995). Methods for combining phenological time series: Application to bud burst in birch (Betula pendula) in Central Finland for the period 1896–1955. Tree Physiology, 15, 721–726.

    Article  Google Scholar 

  • Häkkinen, R., Linkosalo, T., & Hari, P. (1998). Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiology, 18, 707–712.

    Article  Google Scholar 

  • Hänninen, H. (1987). Metsäpuiden vuosirytmistä. Metsäntutkimuslaitoksen Tiedonantoja, 249, 12–21.

    Google Scholar 

  • Hänninen, H. (1990a). Modeling dormancy release in trees from cool and temperate regions. In R. K. Dixon, R. S. Meldahl, G. A. Ruark, & W. G. Warren (Eds.), Process modeling of forest growth responses to environmental stress (pp. 159–165). Portland: Timber Press.

    Google Scholar 

  • Hänninen, H. (1990b). Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213, 1–47.

    Google Scholar 

  • Hänninen, H. (1991). Does climatic warming increase the risk of frost damage in northern trees? Plant, Cell and Environment, 14, 449–454.

    Article  Google Scholar 

  • Hänninen, H. (1995a). Effects of climatic change on trees from cool and temperate regions: An ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany, 73, 183–199.

    Article  Google Scholar 

  • Hänninen, H. (1995b). Assessing ecological implications of climatic change: Can we rely on our simulation models? Climatic Change, 31, 1–4.

    Article  Google Scholar 

  • Hänninen, H. (1996). Effects of climatic warming on northern trees: Testing the frost damage hypothesis with meteorological data from provenance transfer experiments. Scandinavian Journal of Forest Research, 11, 17–25.

    Article  Google Scholar 

  • Hänninen, H. (2006). Climate warming and the risk of frost damage to boreal forest trees: Identification of critical ecophysiological traits. Tree Physiology, 26, 889–898.

    Article  Google Scholar 

  • Hänninen, H., & Kramer, K. (2007). A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica, 41, 167–205.

    Google Scholar 

  • Hänninen, H., & Lundell, R. (2007). Dynamic models in plant ecophysiology. In E. Taulavuori & K. Taulavuori (Eds.), Physiology of northern plants under changing environment (pp. 157–175). Trivandrum, Kerala: Research Signpost.

    Google Scholar 

  • Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in Plant Science, 16, 412–416.

    Google Scholar 

  • Hänninen, H., Kellomäki, S., Laitinen, K., Pajari, B., & Repo, T. (1993). Effect of increased winter temperature on the onset of height growth of Scots pine: A field test of a phenological model. Silva Fennica, 27, 251–257.

    Google Scholar 

  • Hänninen, H., Leinonen, I., Repo, T., & Kellomäki, S. (1996). Overwintering and productivity of Scots pine in a changing climate. Silva Fennica, 30, 229–237.

    Article  Google Scholar 

  • Hänninen, H., Kolari, P., & Hari, P. (2005). Seasonal development of Scots pine under climatic warming: Effects on photosynthetic production. Canadian Journal of Forest Research, 35, 2092–2099.

    Article  Google Scholar 

  • Hänninen, H., Slaney, M., & Linder, S. (2007). Dormancy release of Norway spruce under climatic warming: Testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiology, 27, 291–300.

    Article  Google Scholar 

  • Hänninen, H., Lundell, R., & Junttila, O. (2013). A fifty-year-old conceptual plant dormancy model provides new insights into dynamic phenology modelling. In R. Sievänen, E. Nikinmaa, C. Godin, A. Lintunen, & P. Nygren (Eds.), Proceedings of the 7th international conference on functional-structural plant models, Saariselkä, 9–14 June 2013. http://www.metal.fi/fspm2013/proceedings. ISBN 978-951-651-408-9. p. 176.

  • Hari, P., Nikinmaa, E., Vesala, T., Pohja, T., Siivola, E., Lahti, T., Aalto, P., Hiltunen, V., Ilvesniemi, H., Keronen, P., Kolari, P., Grönholm, T., Palva, L., Pumpanen, J., Petäjä, T., Rannik, Ü., & Kulmala, M. (2008). SMEAR network. In P. Hari & L. Kulmala (Eds.), Boreal forest and climate change (pp. 46–56). Dordrecht: Springer Science+Business Media B.V.

    Google Scholar 

  • Heide, O. M. (2003). High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warning. Tree Physiology, 23, 931–936.

    Google Scholar 

  • Henry, G. H. R., & Molau, U. (1997). Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology, 3(Suppl. 1), 1–9.

    Article  Google Scholar 

  • Hijmans, R. J., & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281.

    Article  Google Scholar 

  • Hlásny, T., & Turčáni, M. (2009). Insect pests as climate change driven disturbances in forest ecosystems. In K. Střelcová, C. Mátyás, A. Kleidon, M. Lapin, F. Matejka, M. Blaženec, J. Škvarenina, & J. Holécy (Eds.), Bioclimatology and natural hazards (pp. 165–177). Dordrecht: Springer Science+Business Media B.V.

    Chapter  Google Scholar 

  • IPCC. (2013). T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge/New York: Cambridge University Press. 1535 p.

    Google Scholar 

  • IPCC. (2014a). C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part a: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge/New York: Cambridge University Press. 1132 p.

    Google Scholar 

  • IPCC. (2014b). V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge/New York: Cambridge University Press. 688 p.

    Google Scholar 

  • Jönsson, A. M., Linderson, M.-L., Stjernquist, I., Schlyter, P., & Bärring, L. (2004). Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Global and Planetary Change, 44, 195–207.

    Article  Google Scholar 

  • Kalela, A. (1938). Zur Synthese der experimentellen Untersuchungen über Klimarassen der Holzarten. Communicationes Instituti Forestalis Fenniae, 26(1), 1–445.

    Google Scholar 

  • Kellomäki, S., & Väisänen, H. (1997). Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecological Modelling, 97, 121–140.

    Google Scholar 

  • Kellomäki, S., Väisänen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U., & Pajari, B. (1992). A simulation model for the succession of the boreal forest ecosystem. Silva Fennica, 26, 1–18.

    Article  Google Scholar 

  • Kellomäki, S., Hänninen, H., & Kolström, M. (1995). Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecological Applications, 5, 42–52.

    Article  Google Scholar 

  • Kellomäki, S., Karjalainen, T., & Väisänen, H. (1997). More timber from boreal forests under changing climate? Forest Ecology and Management, 94, 195–208.

    Article  Google Scholar 

  • Kellomäki, S., Wang, K.-Y., & Lemettinen, M. (2000). Controlled environment chambers for investigating tree response to elevated CO2 and temperature under boreal conditions. Photosynthetica, 38, 69–81.

    Article  Google Scholar 

  • Kettunen, L., Mukula, J., Pohjonen, V., Rantanen, O., & Varjo, U. (1987). The effects of climatic variations on agriculture in Finland. In M. L. Parry, T. R. Carter, & N. T. Konijn (Eds.), The impact of climatic variations on agriculture (Assessment in cool temperate and cold regions, Vol. 1, pp. 513–614). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Kilpeläinen, A., Peltola, H., Rouvinen, I., & Kellomäki, S. (2006). Dynamics of daily height growth in Scots pine trees at elevated temperature and CO2. Trees, 20, 16–27.

    Article  Google Scholar 

  • Kolari, P., & Hari, P. (2008). Photosynthetic production of a tree. In P. Hari & L. Kulmala (Eds.), Boreal forest and climate change (pp. 313–325). Dordrecht: Springer Science + Business Media B.V.

    Google Scholar 

  • Koski, V., & Selkäinaho, J. (1982). Experiments on the joint effect of heat sum and photoperiod on seedlings of Betula pendula. Communicationes Instituti Forestalis Fenniae, 105, 1–34.

    Google Scholar 

  • Koski, V., & Sievänen, R. (1985). Timing of growth cessation in relation to the variations in the growing season. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 167–193). Helsinki: Helsinki University Press.

    Google Scholar 

  • Kramer, K. (1994). A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant, Cell and Environment, 17, 367–377.

    Article  Google Scholar 

  • Kramer, K. (1996). Phenology and growth of European trees in relation to climate change. Thesis, Landbouw Universiteit Wageningen, the Netherlands, 210 p.

    Google Scholar 

  • Kramer, K., & Hänninen, H. (2009). The annual cycle of development of trees and process-based modelling of growth to scale up from the tree to the stand. In A. Noormets (Ed.), Phenology of ecosystem processes (pp. 201–227). Dordrecht: Springer Science+Business Media LLC.

    Chapter  Google Scholar 

  • Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A., Granier, A., Grünwald, T., Hari, P., Jans, W., Kellomäki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., Mohren, G. M. J., Moors, E., Nissinen, A., Peltola, H., Sabaté, S., Sanchez, A., Sontag, M., Valentini, R., & Vesala, T. (2002). Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8, 213–230.

    Article  Google Scholar 

  • Kreyling, J. (2010). Winter climate change: A critical factor for temperate vegetation performance. Ecology, 91, 1939–1948.

    Article  Google Scholar 

  • Landsberg, J. J. (1974). Apple fruit bud development and growth; analysis and an empirical model. Annals of Botany, 38, 1013–1023.

    Google Scholar 

  • Leinonen, I. (1996). A simulation model for the annual frost hardiness and freeze damage of Scots pine. Annals of Botany, 78, 687–693.

    Article  Google Scholar 

  • Leinonen, I., Repo, T., & Hänninen, H. (1996). Testing of frost hardiness models for Pinus sylvestris in natural conditions and in elevated temperature. Silva Fennica, 30, 159–168.

    Article  Google Scholar 

  • Linkosalo, T., & Lechowicz, M. (2006). Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula). Tree Physiology, 26, 1249–1256.

    Article  Google Scholar 

  • Linkosalo, T., Häkkinen, R., & Hari, P. (1996). Improving the reliability of a combined phenological time series by analyzing observation quality. Tree Physiology, 16, 661–664.

    Article  Google Scholar 

  • Linkosalo, T., Carter, T. R., Häkkinen, R., & Hari, P. (2000). Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: A comparison of two models. Tree Physiology, 20, 1175–1182.

    Article  Google Scholar 

  • Linkosalo, T., Häkkinen, R., Terhivuo, J., Tuomenvirta, H., & Hari, P. (2009). The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology, 149, 453–461.

    Article  Google Scholar 

  • Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., & Nikinmaa, E. (2004). Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiology, 24, 369–376.

    Article  Google Scholar 

  • Marion, G. M., Henry, G. H. R., Freckman, D. W., Johnstone, J., Jones, G., Jones, M. H., Lévesque, E., Molau, U., Mølgaard, P., Parsons, A. N., Svoboda, J., & Virginia, R. A. (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3(Suppl. 1), 20–32.

    Article  Google Scholar 

  • McCarroll, D., Tuovinen, M., Campbell, R., Gagen, M., Grudd, H., Jalkanen, R., Loader, N. J., & Robertson, I. (2011). A critical evaluation of multi-proxy dendroclimatology in northern Finland. Journal of Quaternary Science, 26, 7–14.

    Article  Google Scholar 

  • Medhurst, J., Parsby, J., Linder, S., Wallin, G., Ceschia, E., & Slaney, M. (2006). A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change. Plant, Cell and Environment, 29, 1853–1869.

    Article  CAS  Google Scholar 

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659.

    Article  CAS  Google Scholar 

  • Menzel, A., & Sparks, T. (2006). Temperature and plant development: Phenology and seasonality. In J. I. L. Morison & M. D. Morecroft (Eds.), Plant growth and climate change (pp. 70–95). Oxford: Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måke, F., Mestre, A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., van Lieth, A. J. H., Wielgolaski, F.-E., Zach, S., & Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.

    Article  Google Scholar 

  • Mooney, H. A., & Ehleringer, J. R. (1997). Photosynthesis. In M. J. Crawley (Ed.), Plant ecology (2nd ed., pp. 1–27). Oxford: Blackwell Science.

    Google Scholar 

  • Moore, J. (2011). Wood properties and uses of Sitka spruce in Britain (Forestry Commission Research Report). Edinburgh: Forest Commission. 48 p.

    Google Scholar 

  • Morin, X., Lechowicz, M. J., Augspurger, C., O’Keefe, J., Viner, D., & Chuine, I. (2009). Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 15, 961–975.

    Article  Google Scholar 

  • Morison, J. I. L., & Morecroft, M. D. (Eds.). (2006). Plant growth and climate change. Oxford: Blackwell Publishing Ltd. 213 p.

    Google Scholar 

  • Murray, M. B., Cannell, M. G. R., & Smith, R. I. (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 26, 693–700.

    Article  Google Scholar 

  • Murray, M. B., Smith, R. I., Leith, I. D., Fowler, D., Lee, H. S. J., Friend, A. D., & Jarvis, P. G. (1994). Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiology, 14, 691–706.

    Article  Google Scholar 

  • Myking, T. (1997). Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees, 12, 107–112.

    Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    Article  CAS  Google Scholar 

  • Nikkanen, T., Karvinen, K., Koski, V., Rusanen, M., & Yrjänä-Ketola, L. (1999). Kuusen ja männyn siemenviljelykset ja niiden käyttöalueet. Metsäntutkimuslaitoksen tiedonantoja 730. 203 p.

    Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  CAS  Google Scholar 

  • Peltola, H., Kellomäki, S., & Väisänen, H. (1999). Model computations of the impact of climatic change on the windthrow risk of trees. Climatic Change, 41, 17–36.

    Article  Google Scholar 

  • Persson, B., & Beuker, E. (1997). Distinguishing between the effects of changes in temperature and light climate using provenance trials with Pinus sylvestris in Sweden. Canadian Journal of Forest Research, 27, 572–579.

    Article  Google Scholar 

  • Rammig, A., Jönsson, A. M., Hickler, T., Smith, B., Bärring, L., & Sykes, M. T. (2010). Impacts of changing frost regimes on Swedish forests: Incorporating cold hardiness in a regional ecosystem model. Ecological Modelling, 221, 303–313.

    Article  Google Scholar 

  • Rapacz, M., Ergon, Å., Höglind, M., Jørgensen, M., Jurczyk, B., Østrem, L., Rognli, O. A., & Tronsmo, A. M. (2014). Overwintering of herbaceous plants in a changing climate. Still more questions than answers. Plant Science, 225, 34–44.

    Article  CAS  Google Scholar 

  • Rasmus, S., Gustafsson, D., Lundell, R., & Saarinen, T. (2016). Observations and snow model simulations of winter energy balance terms within and between different coniferous forests in Southern Boreal Finland. Hydrology Research, 47, 201–216.

    Google Scholar 

  • Repo, T. (1992). Seasonal changes of frost hardiness in Picea abies and Pinus sylvestris in Finland. Canadian Journal of Forest Research, 22, 1949–1957.

    Article  Google Scholar 

  • Repo, T., Hänninen, H., & Kellomäki, S. (1996). The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant, Cell and Environment, 19, 209–216.

    Article  Google Scholar 

  • Roberts, A. M. I., Tansey, C., Smithers, R. J., & Phillimore, A. B. (2015). Predicting a change in the order of spring phenology in temperate forests. Global Change Biology, 21, 2603–2611.

    Article  Google Scholar 

  • Robson, T. M., Rasztovits, E., Aphalo, P. J., Alia, R., & Aranda, I. (2013). Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate origin. Agricultural and Forest Meteorology, 180, 76–85.

    Article  Google Scholar 

  • Rousi, M., Possen, B. J. H. M., Hagqvist, R., & Thomas, B. R. (2012). From the Arctic Circle to the Canadian prairies – A case study of silver birch acclimation capacity. Silva Fennica, 46, 355–364.

    Article  Google Scholar 

  • Sakai, A., & Larcher, W. (1987). Frost survival of plants. Responses and adaptation to freezing stress. Berlin: Springer-Verlag. 321 pp.

    Book  Google Scholar 

  • Sarvas, R. (1972). Investigations on the annual cycle of development of forest trees. Active period. Communicationes Instituti Forestalis Fenniae, 76(3), 1–110.

    Google Scholar 

  • Sarvas, R. (1974). Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fenniae, 84(1), 1–101.

    Google Scholar 

  • Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G., & Vourlitis, G. (2001). Tree and forest functioning in response to global warming. New Phytologist, 149, 369–400.

    Article  CAS  Google Scholar 

  • Slaney, M., Wallin, G., Medhurst, J., & Linder, S. (2007). Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce. Tree Physiology, 27, 301–312.

    Article  Google Scholar 

  • Sutinen, S., Partanen, J., Viherä-Aarnio, A., & Häkkinen, R. (2009). Anatomy and morphology in developing vegetative buds on detached Norway spruce branches in controlled conditions before bud burst. Tree Physiology, 29, 1457–1465.

    Article  Google Scholar 

  • Sutinen, S., Partanen, J., Viherä-Aarnio, A., & Häkkinen, R. (2012). Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field. Tree Physiology, 32, 987–997.

    Article  Google Scholar 

  • Taulavuori, K. M. J., Taulavuori, E. B., Skre, O., Nilsen, J., Igeland, B., & Laine, K. M. (2004). Dehardening of mountain birch (Betula pubescens ssp. czerepanovii) ecotypes at elevated winter temperatures. New Phytologist, 162, 427–436.

    Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    Article  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. PNAS, 102, 8245–8250.

    Article  CAS  Google Scholar 

  • Ununger, J., Ekberg, I., & Kang, H. (1988). Genetic control and age-related changes of juvenile growth characters in Picea abies. Scandinavian Journal of Forest Research, 3, 55–66.

    Article  Google Scholar 

  • van der Kamp, B. J., & Worrall, J. (1990). An unusual case of winter bud damage in British Columbia interior conifers. Canadian Journal of Forest Research, 20, 1640–1647.

    Article  Google Scholar 

  • Vegis, A. (1964). Dormancy in higher plants. Annual Review of Plant Physiology, 15, 185–224.

    Article  CAS  Google Scholar 

  • Viherä-Aarnio, A., & Velling, P. (2008). Seed transfers of silver birch (Betula pendula) from the Baltic to Finland – Effect on growth and stem quality. Silva Fennica, 42, 735–751.

    Article  Google Scholar 

  • Viherä-Aarnio, A., Sutinen, S., Partanen, J., & Häkkinen, R. (2014). Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Tree Physiology, 34, 547–556.

    Article  Google Scholar 

  • Vitasse, Y. (2013). Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 198, 149–155.

    Article  Google Scholar 

  • Wallin, G., Hall, M., Slaney, M., Räntfors, M., Medhurst, J., & Linder, S. (2013). Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO2] and air temperature. Tree Physiology, 33, 1177–1191.

    Article  CAS  Google Scholar 

  • Wang, A.-F., Roitto, M., Lehto, T., Zwiazek, J. J., Calvo-Polanco, M., & Repo, T. (2013). Waterlogging under simulated late-winter conditions had little impact on the physiology and growth of Norway spruce seedlings. Annals of Forest Science, 70, 781–790.

    Article  Google Scholar 

  • Willis, K. J., & MacDonald, G. M. (2011). Long-term ecological records and their relevance to climate change predictions for a warmer world. Annual Review of Ecology, Evolution, and Systematics, 42, 267–287.

    Article  Google Scholar 

  • Woldendorp, G., Hill, M. J., Doran, R., & Ball, M. C. (2008). Frost in a future climate: modelling interactive effects of warmer temperatures and rising atmospheric [CO2] on the incidence and severity of frost damage in a temperate evergreen (Eucalyptus pauciflora). Global Change Biology, 14, 294–308.

    Article  Google Scholar 

  • Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., Pau, S., Regetz, J., Davies, T. J., Kraft, N. J. B., Ault, T. R., Bolmgren, K., Mazer, S. J., McCabe, G. J., McGill, B. J., Parmesan, C., Salamin, N., Schwartz, M. D., & Cleland, E. E. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494–497.

    CAS  Google Scholar 

  • Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., & Norby, R. J. (2014). Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 enrichment studies. New Phytologist, 202, 803–822.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hänninen, H. (2016). The Annual Cycle Under Changing Climatic Conditions. In: Boreal and Temperate Trees in a Changing Climate. Biometeorology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7549-6_8

Download citation

Publish with us

Policies and ethics