Skip to main content

Abstract

The metastasis to adjacent locations and distance is one of the most important biological characteristics that distinguish malignant tumors from benign tumors. In 1976, Bross and Blumenson proposed the famous “metastatic cascade theory” [1], i.e., the complicated, dynamic, and continuous biological process of invasion and metastasis can be basically divided into the following relatively independent steps:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bross IDJ, Blumenson LE. Metastatic sites that produce generalized cancer: identification and kinetics of generalizing sites. In: Fundamental aspects of metastasis. 1976. p. 359–75.

    Google Scholar 

  2. Sugarbaker EV. Patterns of metastasis in human malignancies. Cancer Biol Rev. 1981;2:235–78.

    Google Scholar 

  3. Wyckoff J, Wang W, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64:7022–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bindra RS, Glazer PM. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res. 2005;569:75–85.

    Article  CAS  PubMed  Google Scholar 

  5. Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101:816–29.

    Article  CAS  PubMed  Google Scholar 

  6. Parekh K, Ramachandran S, Cooper J, et al. Tenascin-C, over expressed in lung cancer down regulates effector functions of tumor infiltrating lymphocytes. Lung Cancer. 2005;47:17–29.

    Article  PubMed  Google Scholar 

  7. Zhang T, Sun HC, Xu Y, et al. Overexpression of platelet-derived growth factor receptor alpha in endothelial cells of hepatocellular carcinoma associated with high metastatic potential. Clin Cancer Res. 2005;11:8557–63.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng Q, Li S, Chepeha DB, et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell. 2005;8:13–23.

    Article  CAS  PubMed  Google Scholar 

  9. Bagley RG, Weber W, Rouleau C, et al. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy. Cancer Res. 2005;65:9741–50.

    Article  CAS  PubMed  Google Scholar 

  10. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102:18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu LF, Lind EF, Gondek DC, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 2006;442:997–1002.

    Article  CAS  PubMed  Google Scholar 

  13. Queen MM, Ryan RE, Holzer RG, et al. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 2005;65:8896–904.

    Article  CAS  PubMed  Google Scholar 

  14. Kukreja A, Hutchinson A, Dhodapkar K, et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med. 2006;203:1859–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7:411–23.

    Article  PubMed  Google Scholar 

  16. Dong HP, Elstrand MB, Holth A, et al. NK- and B-cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol. 2006;125:451–8.

    Article  PubMed  Google Scholar 

  17. Nishikawa H, Kato T, Tawara I, et al. Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts. Proc Natl Acad Sci U S A. 2005;102:9253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hiraoka N, Onozato K, Kosuge T, et al. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.

    Article  CAS  PubMed  Google Scholar 

  19. Liu C, Gao S, Qu Z, et al. Tumor microenvironment: hypoxia and buffer capacity for immunotherapy. Med Hypotheses. 2007;69:590.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts SJ, Ng BY, Filler RB, et al. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci U S A. 2007;104:6770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

  22. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  23. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883–6.

    Article  CAS  PubMed  Google Scholar 

  24. Budhu A, Forgues M, Ye QH, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.

    Article  CAS  PubMed  Google Scholar 

  25. Samoszuk M, Kanakubo E, Chan JK. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts. BMC Cancer. 2005;5:121.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Overall CM, Kleifeld O. Tumour microenvironment – opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6:227–39.

    Article  CAS  PubMed  Google Scholar 

  27. Giannelli G, Fransvea E, Marinosci F, et al. Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol. 2002;161:183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–7.

    Article  CAS  PubMed  Google Scholar 

  29. van Deventer HW, Serody JS, McKinnon KP, et al. Transfection of macrophage inflammatory protein 1 alpha into B16 F10 melanoma cells inhibits growth of pulmonary metastases but not subcutaneous tumors. J Immunol. 2002;169:1634–9.

    Article  PubMed  Google Scholar 

  30. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 2004;6:447–58.

    Article  CAS  PubMed  Google Scholar 

  31. Wu X, Fan J, Wang X, et al. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun. 2007;355:866–71.

    Article  CAS  PubMed  Google Scholar 

  32. Sun B, Zhang S, Zhang D, et al. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep. 2006;16:693–8.

    CAS  PubMed  Google Scholar 

  33. Franchi A, Gallo O, Massi D, et al. Tumor lymphangiogenesis in head and neck squamous cell carcinoma: a morphometric study with clinical correlations. Cancer. 2004;101:973–8.

    Article  PubMed  Google Scholar 

  34. Mylona E, Alexandrou P, Mpakali A, et al. Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and -D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol. 2007;33:294–300.

    Article  CAS  PubMed  Google Scholar 

  35. Schoppmann SF, Bayer G, Aumayr K, et al. Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg. 2004;240:306–12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chaudary N, Hill RP. Hypoxia and metastasis. Clin Cancer Res. 2007;13:1947–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res. 2003;63:3847–54.

    CAS  PubMed  Google Scholar 

  38. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.

    Article  CAS  PubMed  Google Scholar 

  39. Gamero AM, Young HA, Wiltrout RH. Inactivation of Stat3 in tumor cells: releasing a brake on immune responses against cancer? Cancer Cell. 2004;5:111–2.

    Article  CAS  PubMed  Google Scholar 

  40. Yahata Y, Shirakata Y, Tokumaru S, et al. Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem. 2003;278:40026–31.

    Article  CAS  PubMed  Google Scholar 

  41. Topczewska JM, Postovit LM, Margaryan NV, et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med. 2006;12:925–32.

    Article  CAS  PubMed  Google Scholar 

  42. Ayala G, Tuxhorn JA, Wheeler TM, et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res. 2003;9:4792–801.

    CAS  PubMed  Google Scholar 

  43. Hill R, Song Y, Cardiff RD, et al. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell. 2005;123:1001–11.

    Article  CAS  PubMed  Google Scholar 

  44. Kim R, Emi M, Tanabe K, et al. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66:5527–36.

    Article  CAS  PubMed  Google Scholar 

  45. Vidal-Vanaclocha F, Mendoza L, Telleria N, et al. Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev. 2006;25:417–34.

    Article  CAS  PubMed  Google Scholar 

  46. Rappaport AM. The microcirculatory hepatic unit. Microvasc Res. 1973;6:212.

    Article  CAS  PubMed  Google Scholar 

  47. Ghadjar P, Coupland SE, Na I-K, et al. Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. J Clin Oncol. 2006;24:1910–6.

    Article  CAS  PubMed  Google Scholar 

  48. Vermeulen PB, Colpaert C, Salgado R, et al. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol. 2001;195:336–42.

    Article  CAS  PubMed  Google Scholar 

  49. Vidal-Vanaclocha F. The prometastatic microenvironment of the liver. Cancer Microenviron. 2008;1:113–29.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Obul Reddy B, Martina G, Dennis K, et al. Global analysis of host tissue gene expression in the invasive front of colorectal liver metastases. Int J Cancer. 2006;118:74–89.

    Article  Google Scholar 

  51. Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature. 2006;441:1015–9.

    Article  CAS  PubMed  Google Scholar 

  52. Suh N, Roberts AB, Birkey Reffey S, et al. Synthetic triterpenoids enhance transforming growth factor beta/Smad signaling. Cancer Res. 2003;63:1371–6.

    CAS  PubMed  Google Scholar 

  53. Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer. 2006;6:613–25.

    Article  CAS  PubMed  Google Scholar 

  54. Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–63.

    CAS  PubMed  Google Scholar 

  55. Yu P, Rowley DA, Fu YX, et al. The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol. 2006;18:226–31.

    Article  CAS  PubMed  Google Scholar 

  56. Bello L, Lucini V, Costa F, et al. Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma. Clin Cancer Res. 2004;10:4527–37.

    Article  CAS  PubMed  Google Scholar 

  57. Hu H, Sun L, Guo C, et al. Tumor cell-microenvironment interaction models coupled with clinical validation reveal CCL2 and SNCG as two predictors of colorectal cancer hepatic metastasis. Clin Cancer Res. 2009;15:5485–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht and People's Medical Publishing House

About this chapter

Cite this chapter

Fan, J., Gao, Q. (2017). Metastatic Liver Cancer and Microenvironment. In: Qin, X., Xu, J., Zhong, Y. (eds) Multidisciplinary Management of Liver Metastases in Colorectal Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7755-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7755-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7753-7

  • Online ISBN: 978-94-017-7755-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics