Skip to main content

Brain Systems for the Pleasure of Food and Other Primary Rewards

  • Chapter
  • First Online:
Anhedonia: A Comprehensive Handbook Volume I
  • 1612 Accesses

Abstract

The orbitofrontal cortex, anterior cingulate cortex, and amygdala are key components of the reward and pleasure systems of the human brain. Investigations with functional magnetic resonance imaging (fMRI) of how these brain systems respond to food and other primary, sensory rewards can reveal basic principles of their function in reward, experienced pleasure, decision-making, and behavior. Here I review recent advances that have been made with this approach, with the aim to characterize the functional specializations of the orbitofrontal cortex, anterior cingulate cortex and amygdala in reward, pleasure and decision-making. The specific aims are (i) to show that the orbitofrontal cortex, anterior cingulate cortex, and amygdala are principal structures in the human brain for reward and pleasure; (ii) to describe their roles in information processing for rewards; (iii) to outline some key principles according to which human reward and pleasure systems operate; (iv) to consider the relationship between these reward systems and the decision systems in the ventromedial prefrontal cortex; and (v) to illustrate with specific examples how this approach to reward and pleasure is also relevant to applied disciplines including food design, food marketing, health policy, and clinical conditions in which hedonic responses to rewards are altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabenhorst F, Rolls ET. Value, pleasure, and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15:56–67.

    PubMed  Google Scholar 

  2. Padoa-Schioppa C. Neurobiology of economic choice: a good-based model. Annu Rev Neurosci. 2011;34:333–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Glimcher PW. Foundations of neuroeconomic analysis. Oxford: Oxford University Press; 2011.

    Google Scholar 

  4. Rangel A, Camerer C, Montague PR. A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci. 2008;9:545–56.

    CAS  PubMed  Google Scholar 

  5. Grabenhorst F, Rolls ET, Parris BA, D’Souza A. How the brain represents the reward value of fat in the mouth. Cereb Cortex. 2010;20:1082–91.

    PubMed  Google Scholar 

  6. Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2013 Sep 3. doi: 10.1002/hbm.22346. [Epub ahead of print].

    Google Scholar 

  7. Grabenhorst F, Schulte FP, Maderwald S, Brand M. Food labels promote healthy choices by a decision bias in the amygdala. Neuroimage. 2013;74:152–63.

    PubMed  Google Scholar 

  8. Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: top down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex. 2008;18:1549–59.

    PubMed  Google Scholar 

  9. Grabenhorst F, Rolls ET, Margot C. A hedonically complex odor mixture captures the brain’s attention. Neuroimage. 2011;55:832–43.

    PubMed  Google Scholar 

  10. Grabenhorst F, Rolls ET, Margot C, da Silva MAAP, Velazco MI. How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J Neurosci. 2007;27:13532–40.

    CAS  PubMed  Google Scholar 

  11. Gray JA. Elements of a two-process theory of learning. London: Academic; 1975.

    Google Scholar 

  12. Millenson JR. Principles of behavioral analysis. New York: MacMillan; 1967.

    Google Scholar 

  13. Weiskrantz L. Emotion. In: Weiskrantz L, editor. Analysis of behavioural change. New York/London: Harper and Row; 1968. p. 50–90.

    Google Scholar 

  14. Rolls ET. A theory of emotion, and its application to understanding the neural basis of emotion. In: Oomura Y, editor. Emotions. Neural and chemical control. Basel: Karger; 1986. p. 325–44.

    Google Scholar 

  15. Rolls ET. A theory of emotion, and its application to understanding the neural basis of emotion. Cogn Emotion. 1990;4:161–90.

    Google Scholar 

  16. Rolls ET. The brain and emotion. Oxford: Oxford University Press; 1999.

    Google Scholar 

  17. Rolls ET. Emotion explained. Oxford: Oxford University Press; 2005.

    Google Scholar 

  18. Rolls ET, Grabenhorst F. The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol. 2008;86:216–44.

    PubMed  Google Scholar 

  19. Cabanac M. Physiological role of pleasure. Science. 1971;173:1103–7.

    CAS  PubMed  Google Scholar 

  20. Rolls ET, Rolls BJ, Rowe EA. Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiol Behav. 1983;30:185–92.

    CAS  PubMed  Google Scholar 

  21. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. New York: Oxford University Press; 1998.

    Google Scholar 

  22. Cabanac M. Pleasure: the common currency. J Theor Biol. 1992;155:173–200.

    CAS  PubMed  Google Scholar 

  23. Kahneman D, Tversky A. Choices, values, and frames. Am Psychol. 1984;4:341–50.

    Google Scholar 

  24. Kahneman D, Wakker PP, Sarin R. Back to Bentham? – Explorations of experienced utility. Q J Econ. 1997;112:375–405.

    Google Scholar 

  25. Rolls ET. The affective neuroscience of consciousness: higher order linguistic thoughts, dual routes to emotion and action, and consciousness. In: Zelazo P, Moscovitch M, Thompson E, editors. Cambridge handbook of consciousness. Cambridge: Cambridge University Press; 2007. p. 831–59.

    Google Scholar 

  26. Rolls ET. Consciousness, decision-making, and neural computation. In: Cutsuridis V, Hussain A, Taylor JG, editors. Perception-action cycle: models, algorithms and systems. Berlin: Springer; 2011. p. 287–333.

    Google Scholar 

  27. Grabenhorst F, Rolls ET, Parris BA. From affective value to decision-making in the prefrontal cortex. Eur J Neurosci. 2008;28:1930–9.

    PubMed  Google Scholar 

  28. Balleine BW, O’Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology. 2010;35:48–69.

    PubMed  Google Scholar 

  29. Seymour B, Dolan R. Emotion, decision making, and the amygdala. Neuron. 2008;58:662–71.

    CAS  PubMed  Google Scholar 

  30. Rolls ET. The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351:1433–44.

    CAS  PubMed  Google Scholar 

  31. Grabenhorst F, Rolls ET. Different representations of relative and absolute value in the human brain. Neuroimage. 2009;48:258–68.

    PubMed  Google Scholar 

  32. Rolls ET, Grabenhorst F, Parris BA. Warm pleasant feelings in the brain. Neuroimage. 2008;41:1504–13.

    PubMed  Google Scholar 

  33. Rolls ET, O’Doherty J, Kringelbach ML, et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex. 2003;13:308–17.

    CAS  PubMed  Google Scholar 

  34. Rolls ET, Scott TR. Central taste anatomy and neurophysiology. In: Doty RL, editor. Handbook of olfaction and gustation, vol. chap, 32. 2nd ed. New York: Dekker; 2003. p. 679–705.

    Google Scholar 

  35. Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S. The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol. 1988;397:1–12.

    CAS  PubMed  Google Scholar 

  36. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET. Satiety does not affect gustatory-evoked activity in the nucleus tractus solitarius or opercular cortex of the alert cynomolgus monkey. Chem Senses. 1985;10:442.

    Google Scholar 

  37. Rolls ET. Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron. 2000;27:205–18.

    CAS  PubMed  Google Scholar 

  38. Öngür D, Ferry AT, Price JL. Architectonic division of the human orbital and medial prefrontal cortex. J Comp Neurol. 2003;460:425–49.

    PubMed  Google Scholar 

  39. Wallis JD. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat Neurosci. 2012;15:13–9.

    CAS  Google Scholar 

  40. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702.

    CAS  PubMed  Google Scholar 

  41. Kadohisa M, Rolls ET, Verhagen JV. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chem Senses. 2005;30:401–19.

    PubMed  Google Scholar 

  42. Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994;14:5437–52.

    CAS  PubMed  Google Scholar 

  43. Rolls ET, Verhagen JV, Kadohisa M. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness and capsaicin. J Neurophysiol. 2003;90:3711–24.

    PubMed  Google Scholar 

  44. Verhagen JV, Rolls ET, Kadohisa M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol. 2003;90:1514–25.

    PubMed  Google Scholar 

  45. Rolls ET, Yaxley S, Sienkiewicz ZJ. Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol. 1990;64:1055–66.

    CAS  PubMed  Google Scholar 

  46. Baylis LL, Rolls ET, Baylis GC. Afferent connections of the orbitofrontal cortex taste area of the primate. Neuroscience. 1995;64:801–12.

    CAS  PubMed  Google Scholar 

  47. Critchley HD, Rolls ET. Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem Senses. 1996;21:135–45.

    CAS  PubMed  Google Scholar 

  48. Rolls ET, Critchley H, Wakeman EA, Mason R. Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5′-monophosphate. Physiol Behav. 1996;59:991–1000.

    CAS  PubMed  Google Scholar 

  49. Pritchard TC, Edwards EM, Smith CA, et al. Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. J Neurosci. 2005;25:6047–56.

    CAS  PubMed  Google Scholar 

  50. Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95:131–64.

    CAS  PubMed  Google Scholar 

  51. Price JL, Carmichael ST, Carnes KM, et al. Olfactory input to the prefrontal cortex. In: Davis JL, Eichenbaum H, editors. Olfaction: a model system for computational neuroscience. Cambridge, MA: MIT Press; 1991. p. 101–20.

    Google Scholar 

  52. Morecraft RJ, Geula C, Mesulam M-M. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol. 1992;232:341–58.

    Google Scholar 

  53. Barbas H. Organization of cortical afferent input to the orbitofrontal area in the rhesus monkey. Neuroscience. 1993;56:841–64.

    CAS  PubMed  Google Scholar 

  54. Carmichael ST, Clugnet M-C, Price JL. Central olfactory connections in the macaque monkey. J Comp Neurol. 1994;346:403–34.

    CAS  PubMed  Google Scholar 

  55. Price JL. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann N Y Acad Sci. 2007;1121:54–71.

    PubMed  Google Scholar 

  56. Seltzer B, Pandya DN. Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J Comp Neurol. 1989;290:451–71.

    CAS  PubMed  Google Scholar 

  57. Barbas H. Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev. 1995;19:499–510.

    CAS  PubMed  Google Scholar 

  58. Carmichael ST, Price JL. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1995;363:642–64.

    CAS  PubMed  Google Scholar 

  59. Rolls ET, Critchley HD, Browning AS, Hernadi A, Lenard L. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J Neurosci. 1999;19:1532–40.

    CAS  PubMed  Google Scholar 

  60. Barbas H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol. 1988;276:313–42.

    CAS  PubMed  Google Scholar 

  61. Öngür D, Price JL. The organisation of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–19.

    PubMed  Google Scholar 

  62. Rolls ET. Memory, attention, and decision-making: a unifying computational neuroscience approach. Oxford: Oxford University Press; 2008.

    Google Scholar 

  63. Barbas H. Specialized elements of orbitofrontal cortex in primates. Ann N Y Acad Sci. 2007;1121:10–32.

    PubMed  Google Scholar 

  64. Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996;371:179–207.

    CAS  PubMed  Google Scholar 

  65. Price JL. Connections of orbital cortex. In: Zald DH, Rauch SL, editors. The orbitofrontal cortex. Oxford: Oxford University Press; 2006. p. 39–55.

    Google Scholar 

  66. Ferry AT, Ongur D, An X, Price JL. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol. 2000;425:447–70.

    CAS  PubMed  Google Scholar 

  67. Kemp JM, Powell TPS. The cortico-striate projections in the monkey. Brain. 1970;93:525–46.

    CAS  PubMed  Google Scholar 

  68. Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26:8368–76.

    CAS  PubMed  Google Scholar 

  69. Insausti R, Amaral DG, Cowan WM. The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neurol. 1987;264:356–95.

    CAS  PubMed  Google Scholar 

  70. Nauta WJH. Some efferent connections of the prefrontal cortex in the monkey. In: Warren JM, Akert K, editors. The frontal granular cortex and behavior. New York: McGraw Hill; 1964. p. 397–407.

    Google Scholar 

  71. Johnson TN, Rosvold HE, Mishkin M. Projections from behaviorally defined sectors of the prefrontal cortex to the basal ganglia, septum and diencephalon of the monkey. Exp Neurol. 1968;21:20–34.

    CAS  PubMed  Google Scholar 

  72. Padoa-Schioppa C, Assad JA. Neurons in the orbitofrontal cortex encode economic value. Nature. 2006;441:223–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wallis JD. Neuronal mechanisms in prefrontal cortex underlying adaptive choice behavior. Ann N Y Acad Sci. 2007;1121:447–60.

    PubMed  Google Scholar 

  74. Rolls ET, Sienkiewicz ZJ, Yaxley S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci. 1989;1:53–60.

    PubMed  Google Scholar 

  75. Mora F, Avrith DB, Phillips AG, Rolls ET. Effects of satiety on self-stimulation of the orbitofrontal cortex in the monkey. Neurosci Lett. 1979;13:141–5.

    CAS  PubMed  Google Scholar 

  76. Mora F, Avrith DB, Rolls ET. An electrophysiological and behavioural study of self-stimulation in the orbitofrontal cortex of the rhesus monkey. Brain Res Bull. 1980;5:111–5.

    CAS  PubMed  Google Scholar 

  77. Thorpe SJ, Rolls ET, Maddison S. Neuronal activity in the orbitofrontal cortex of the behaving monkey. Exp Brain Res. 1983;49:93–115.

    CAS  PubMed  Google Scholar 

  78. Morrison SE, Saez A, Lau B, Salzman CD. Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron. 2011;71:1127–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003;13:1064–71.

    CAS  PubMed  Google Scholar 

  80. Baylis LL, Gaffan D. Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp Brain Res. 1991;86:617–22.

    CAS  PubMed  Google Scholar 

  81. Camille N, Griffiths CA, Vo K, Fellows LK, Kable JW. Ventromedial frontal lobe damage disrupts value maximization in humans. J Neurosci. 2011;31:7527–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hornak J, Bramham J, Rolls ET, et al. Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain. 2003;126:1691–712.

    CAS  PubMed  Google Scholar 

  83. de Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci. 2003;18:2059–68.

    PubMed  Google Scholar 

  84. Rolls ET, Kringelbach ML, de Araujo IET. Different representations of pleasant and unpleasant odors in the human brain. Eur J Neurosci. 2003;18:695–703.

    PubMed  Google Scholar 

  85. Tremblay L, Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature. 1999;398:704–8.

    CAS  PubMed  Google Scholar 

  86. Padoa-Schioppa C. Range-adapting representation of economic value in the orbitofrontal cortex. J Neurosci. 2009;29:14004–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kobayashi S, Pinto de Carvalho O, Schultz W. Adaptation of reward sensitivity in orbitofrontal neurons. J Neurosci. 2010;30:534–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kennerley SW, Dahmubed AF, Lara AH, Wallis JD. Neurons in the frontal lobe encode the value of multiple decision variables. J Cogn Neurosci. 2009;21:1162–78.

    PubMed  PubMed Central  Google Scholar 

  89. O’Neill M, Schultz W. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron. 2010;68:789–800.

    PubMed  Google Scholar 

  90. Burdach KF. Vom Baue und Leben des Gehirns. Leipzig: Dyk; 1819.

    Google Scholar 

  91. Price JL. Comparative aspects of amygdala connectivity. Ann N Y Acad Sci. 2003;985:50–8.

    PubMed  Google Scholar 

  92. Friedman DP, Murray EA, O’Neill JB, Mishkin M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol. 1986;252:323–47.

    CAS  PubMed  Google Scholar 

  93. Aggleton JP, Burton MJ, Passingham RE. Cortical and subcortical afferents to the amygdala in the rhesus monkey (Macaca mulatta). Brain Res. 1980;190:347–68.

    CAS  PubMed  Google Scholar 

  94. Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci. 2002;3:563–73.

    CAS  PubMed  Google Scholar 

  95. Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience. 2002;115:1261–79.

    CAS  PubMed  Google Scholar 

  96. Amaral DG, Price JL. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol. 1984;230:465–96.

    CAS  PubMed  Google Scholar 

  97. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–87.

    CAS  PubMed  Google Scholar 

  98. Pessoa L, Adolphs R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci. 2010;11:773–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dolan RJ. The human amygdala and orbital prefrontal cortex in behavioural regulation. Philos Trans R Soc Lond B Biol Sci. 2007;362:787–99.

    CAS  PubMed  Google Scholar 

  100. Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439:865–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Murray EA. The amygdala, reward and emotion. Trends Cogn Sci. 2007;11:489–97.

    PubMed  Google Scholar 

  102. Rolls ET. Neurophysiology and functions of the primate amygdala, and the neural basis of emotion. In: Aggleton JP, editor. The amygdala: a functional analysis. 2nd ed. Oxford: Oxford University Press; 2000. p. 447–78.

    Google Scholar 

  103. Bermudez MA, Schultz W. Reward magnitude coding in primate amygdala neurons. J Neurophysiol. 2010;104:3424.

    PubMed  Google Scholar 

  104. Machado CJ, Emery NJ, Mason WA, Amaral DG. Selective changes in foraging behavior following bilateral neurotoxic amygdala lesions in rhesus monkeys. Behav Neurosci. 2010;124:761–72.

    PubMed  PubMed Central  Google Scholar 

  105. Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc. 2007;66:96–112.

    PubMed  Google Scholar 

  106. Small DM, Gregory MD, Mak YE, et al. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003;39:701–11.

    CAS  PubMed  Google Scholar 

  107. Small DM, Gerber JC, Mak YE, Hummel T. Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron. 2005;47:593–605.

    CAS  PubMed  Google Scholar 

  108. Kadohisa M, Rolls ET, Verhagen JV. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience. 2005;132:33–48.

    CAS  PubMed  Google Scholar 

  109. Gottfried JA, O’Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003;301:1104–7.

    CAS  PubMed  Google Scholar 

  110. Yan J, Scott TR. The effect of satiety on responses of gustatory neurons in the amygdala of alert cynomolgus macaques. Brain Res. 1996;740:193–200.

    CAS  PubMed  Google Scholar 

  111. de Araujo IE, Gutierrez R, Oliveira-Maia AJ, et al. Neural ensemble coding of satiety states. Neuron. 2006;51:483–94.

    PubMed  Google Scholar 

  112. Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F. Separable substrates for anticipatory and consummatory food chemosensation. Neuron. 2008;57:786–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Anderson AK, Christoff K, Stappen I, et al. Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci. 2003;6:196–202.

    CAS  PubMed  Google Scholar 

  114. Winston JS, Gottfried JA, Kilner JM, Dolan RJ. Integrated neural representations of odor intensity and affective valence in human amygdala. J Neurosci. 2005;25:8903–7.

    CAS  PubMed  Google Scholar 

  115. Anderson AK, Phelps EA. Is the human amygdala critical for the subjective experience of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. J Cogn Neurosci. 2002;14:709–20.

    PubMed  Google Scholar 

  116. Feinstein JS, Adolphs R, Damasio A, Tranel D. The human amygdala and the induction and experience of fear. Curr Biol. 2011;21:34–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gallagher M, Chiba AA. The amygdala and emotion. Curr Opin Neurobiol. 1996;6:221–7.

    CAS  PubMed  Google Scholar 

  118. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

    CAS  PubMed  Google Scholar 

  119. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13–34.

    CAS  PubMed  Google Scholar 

  120. Johnsrude IS, Owen AM, White NM, Zhao WV, Bohbot V. Impaired preference conditioning after anterior temporal lobe resection in humans. J Neurosci. 2000;20:2649–56.

    CAS  PubMed  Google Scholar 

  121. Balleine BW, Killcross S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci. 2006;29:272–9.

    CAS  PubMed  Google Scholar 

  122. Prevost C, Liljeholm M, Tyszka JM, O’Doherty JP. Neural correlates of specific and general Pavlovian-to-Instrumental Transfer within human amygdalar subregions: a high-resolution fMRI study. J Neurosci. 2012;32:8383–90.

    CAS  PubMed  Google Scholar 

  123. Talmi D, Seymour B, Dayan P, Dolan RJ. Human Pavlovian-instrumental transfer. J Neurosci. 2008;28:360–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bechara A, Tranel D, Damasio H, et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science. 1995;269:1115–8.

    CAS  PubMed  Google Scholar 

  125. De Martino B, Kumaran D, Seymour B, Dolan RJ. Frames, biases, and rational decision-making in the human brain. Science. 2006;313:684–7.

    PubMed  PubMed Central  Google Scholar 

  126. Cardinal N, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26:321–52.

    PubMed  Google Scholar 

  127. Bechara A, Damasio H, Damasio AR, Lee GP. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci. 1999;19:5473–81.

    CAS  PubMed  Google Scholar 

  128. Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature. 1998;393:467–70.

    CAS  PubMed  Google Scholar 

  129. Brand M, Grabenhorst F, Starcke K, Vandekerckhove MM, Markowitsch HJ. Role of the amygdala in decisions under ambiguity and decisions under risk: evidence from patients with Urbach-Wiethe disease. Neuropsychologia. 2007;45:1305–17.

    PubMed  Google Scholar 

  130. Schultz W. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol. 2006;57:87–115.

    PubMed  Google Scholar 

  131. Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci. 2003;985:233–50.

    PubMed  Google Scholar 

  132. Adolphs R, Tranel D, Damasio H, Damasio AR. Fear and the human amygdala. J Neurosci. 1995;15:5879–91.

    CAS  PubMed  Google Scholar 

  133. Markowitsch HJ, Staniloiu A. Amygdala in action: relaying biological and social significance to autobiographical memory. Neuropsychologia. 2011;49:718–33.

    PubMed  Google Scholar 

  134. Siebert M, Markowitsch HJ, Bartel P. Amygdala, affect and cognition: evidence from 10 patients with Urbach-Wiethe disease. Brain. 2003;126:2627–37.

    PubMed  Google Scholar 

  135. Grabenhorst F, Hernadi I, Schultz W. Prediction of economic choice by primate amygdala neurons. Proc Natl Acad Sci U S A. 2012;109:18950–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Morecraft RJ, Tanji J. Cingulofrontal interaction and the cingulate motor areas. In: Vogt BA, editor. Cingulate neurobiology and disease. Oxford: Oxford University Press; 2009. p. 113–44.

    Google Scholar 

  137. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol. 1987;262:271–89.

    CAS  PubMed  Google Scholar 

  139. Van Hoesen GW, Morecraft RJ, Vogt BA. Connections of the monkey cingulate cortex. In: Vogt BA, Gabriel M, editors. The neurobiology of the cingulate cortex and limbic thalamus: a comprehensive handbook. Boston: Birkhauser; 1993. p. 249–84.

    Google Scholar 

  140. Öngür D, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998;401:480–505.

    PubMed  Google Scholar 

  141. de Araujo IET, Rolls ET. The representation in the human brain of food texture and oral fat. J Neurosci. 2004;24:3086–93.

    PubMed  Google Scholar 

  142. McCabe C, Rolls ET. Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci. 2007;25:1855–64.

    PubMed  Google Scholar 

  143. Rolls ET, McCabe C. Enhanced affective brain representations of chocolate in cravers vs. non-cravers. Eur J Neurosci. 2007;26:1067–76.

    PubMed  Google Scholar 

  144. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F. Human cortical responses to water in the mouth, and the effects of thirst. J Neurophysiol. 2003;90:1865–76.

    PubMed  Google Scholar 

  145. Rolls ET. The anterior and midcingulate cortices and reward. In: Vogt BA, editor. Cingulate neurobiology and disease. Oxford: Oxford University Press; 2009. p. 191–206.

    Google Scholar 

  146. Rushworth MF, Buckley MJ, Behrens TE, Walton ME, Bannerman DM. Functional organization of the medial frontal cortex. Curr Opin Neurobiol. 2007;17:220–7.

    CAS  PubMed  Google Scholar 

  147. Walton ME, Bannerman DM, Alterescu K, Rushworth MF. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci. 2003;23:6475–9.

    CAS  PubMed  Google Scholar 

  148. Hadland KA, Rushworth MF, Gaffan D, Passingham RE. The anterior cingulate and reward-guided selection of actions. J Neurophysiol. 2003;89:1161–4.

    CAS  PubMed  Google Scholar 

  149. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9:940–7.

    CAS  PubMed  Google Scholar 

  150. Rudebeck PH, Behrens TE, Kennerley SW, et al. Frontal cortex subregions play distinct roles in choices between actions and stimuli. J Neurosci. 2008;28:13775–85.

    CAS  PubMed  Google Scholar 

  151. Walton ME, Devlin JT, Rushworth MF. Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci. 2004;7:1259–65.

    CAS  PubMed  Google Scholar 

  152. Luk CH, Wallis JD. Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex. J Neurosci. 2009;29:7526–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Matsumoto M, Matsumoto K, Abe H, Tanaka K. Medial prefrontal selectivity signalling prediction errors of action values. Nat Neurosci. 2007;10:647–56.

    CAS  PubMed  Google Scholar 

  154. Seo H, Lee D. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J Neurosci. 2007;27:8366–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cai X, Padoa-Schioppa C. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex. J Neurosci. 2012;32:3791–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cole MW, Yeung N, Freiwald WA, Botvinick M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 2009;32:566–74.

    CAS  PubMed  Google Scholar 

  157. Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev. 2004;111:931–59.

    PubMed  Google Scholar 

  158. Hayden BY, Pearson JM, Platt ML. Neuronal basis of sequential foraging decisions in a patchy environment. Nat Neurosci. 2011;14:933–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kolling N, Behrens TE, Mars RB, Rushworth MF. Neural mechanisms of foraging. Science. 2012;336:95–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Grabenhorst F, D’Souza A, Parris BA, Rolls ET, Passingham RE. A common neural scale for the subjective pleasantness of different primary rewards. Neuroimage. 2010;51:1265–74.

    PubMed  Google Scholar 

  161. Barbas H, Pandya DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1989;286:353–75.

    CAS  PubMed  Google Scholar 

  162. Gabbott PL, Warner TA, Jays PR, Bacon SJ. Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res. 2003;993:59–71.

    CAS  PubMed  Google Scholar 

  163. Koski L, Paus T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis. Exp Brain Res. 2000;133:55–65.

    CAS  PubMed  Google Scholar 

  164. Johansen-Berg H, Gutman DA, Behrens TE, et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18:1374–83.

    CAS  PubMed  Google Scholar 

  165. Nagai Y, Critchley HD, Featherstone E, Trimble MR, Dolan RJ. Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. Neuroimage. 2004;22:243–51.

    CAS  PubMed  Google Scholar 

  166. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7:189–95.

    CAS  PubMed  Google Scholar 

  167. Mayberg HS, Brannan SK, Mahurin RK. Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8:1057–61.

    CAS  PubMed  Google Scholar 

  168. Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    CAS  PubMed  Google Scholar 

  169. Grabenhorst F, Rolls ET. Selective attention to affective value alters how the brain processes taste stimuli. Eur J Neurosci. 2008;27:723–9.

    PubMed  Google Scholar 

  170. McCabe C, Rolls ET, Bilderbeck A, McGlone F. Cognitive influences on the affective representation of touch and the sight of touch in the human brain. Soc Cogn Affect Neurosci. 2008;3:97–108.

    PubMed  PubMed Central  Google Scholar 

  171. Guest S, Grabenhorst F, Essick G, et al. Human cortical representation of oral temperature. Physiol Behav. 2007;92:975–84.

    CAS  PubMed  Google Scholar 

  172. Rolls ET. Brain mechanisms underlying flavour and appetite. Philos Trans R Soc Lond B Biol Sci. 2006;361:1123–36.

    PubMed  Google Scholar 

  173. Bernoulli J. Exposition of a new theory on the measurement of risk. Econometrica. 1738/1954;22:23–36.

    Google Scholar 

  174. McFarland DJ, Sibly RM. The behavioural final common path. Philos Trans R Soc Lond B Biol Sci. 1975;270:265–93.

    CAS  PubMed  Google Scholar 

  175. Montague PR, Berns GS. Neural economics and the biological substrates of valuation. Neuron. 2002;36:265–84.

    CAS  PubMed  Google Scholar 

  176. Deco G, Rolls ET. Decision-making and Weber’s Law: a neurophysiological model. Eur J Neurosci. 2006;24:901–16.

    PubMed  Google Scholar 

  177. Wang XJ. Decision making in recurrent neuronal circuits. Neuron. 2008;60:215–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Deco G, Rolls ET, Romo R. Stochastic dynamics as a principle of brain function. Prog Neurobiol. 2009;88:1–16.

    PubMed  Google Scholar 

  179. Rolls ET, Deco G. The noisy brain: stochastic dynamics as a principle of brain function. Oxford: Oxford University Press; 2010.

    Google Scholar 

  180. Padoa-Schioppa C, Assad JA. The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat Neurosci. 2008;11:95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Crespi L. Quantitative variation of incentive and performance in the white rat. Am J Psychol. 1942;55:467–517.

    Google Scholar 

  182. Mazur JE. Learning and behavior. 4th ed. Upper Saddle River: Prentice Hall; 1998.

    Google Scholar 

  183. Kable JW, Glimcher PW. The neurobiology of decision: consensus and controversy. Neuron. 2009;63:733–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. de Araujo IET, Rolls ET, Velazco MI, Margot C, Cayeux I. Cognitive modulation of olfactory processing. Neuron. 2005;46:671–9.

    PubMed  Google Scholar 

  185. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    CAS  PubMed  Google Scholar 

  186. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324:646–8.

    CAS  PubMed  Google Scholar 

  187. Grabenhorst F, Rolls ET. Attentional modulation of affective vs. sensory processing: functional connectivity and a top-down biased activation theory of selective attention. J Neurophysiol. 2010;104:1649–60.

    PubMed  Google Scholar 

  188. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    CAS  PubMed  Google Scholar 

  189. Deco G, Rolls ET. Neurodynamics of biased competition and co-operation for attention: a model with spiking neurons. J Neurophysiol. 2005;94:295–313.

    CAS  PubMed  Google Scholar 

  190. Rolls ET, Grabenhorst F, Deco G. Choice, difficulty, and confidence in the brain. Neuroimage. 2010;53:694–706.

    PubMed  Google Scholar 

  191. Rolls ET, Grabenhorst F, Deco G. Decision-making, errors, and confidence in the brain. J Neurophysiol. 2010;104:2359–74.

    PubMed  Google Scholar 

  192. Petrides M, Pandya DN. Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci. 2007;27:11573–86.

    CAS  PubMed  Google Scholar 

  193. Goldman-Rakic PS, Leung H-C. Functional architecture of the dorsolateral prefrontal cortex in monkeys and humans. In: Stuss DT, Knight RT, editors. Principles of frontal lobe function. New York: Oxford University Press; 2002. p. 85–95.

    Google Scholar 

  194. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. A general mechanism for perceptual decision-making in the human brain. Nature. 2004;431:859–62.

    CAS  PubMed  Google Scholar 

  195. Watanabe M, Sakagami M. Integration of cognitive and motivational context information in the primate prefrontal cortex. Cereb Cortex. 2007;17 Suppl 1:i101–9.

    PubMed  Google Scholar 

  196. Rangel A, Hare T. Neural computations associated with goal-directed choice. Curr Opin Neurobiol. 2010;20:262–70.

    CAS  PubMed  Google Scholar 

  197. Rushworth MF, Behrens TE. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci. 2008;11:389–97.

    CAS  PubMed  Google Scholar 

  198. Hare TA, O’Doherty J, Camerer CF, Schultz W, Rangel A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J Neurosci. 2008;28:5623–30.

    CAS  PubMed  Google Scholar 

  199. Plassmann H, O’Doherty J, Rangel A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J Neurosci. 2007;27:9984–8.

    CAS  PubMed  Google Scholar 

  200. Chib VS, Rangel A, Shimojo S, O’Doherty JP. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci. 2009;29:12315–20.

    CAS  PubMed  Google Scholar 

  201. De Martino B, Kumaran D, Holt B, Dolan RJ. The neurobiology of reference-dependent value computation. J Neurosci. 2009;29:3833–42.

    PubMed  PubMed Central  Google Scholar 

  202. McClure SM, Laibson DI, Loewenstein G, Cohen JD. Separate neural systems value immediate and delayed monetary rewards. Science. 2004;306:503–7.

    CAS  PubMed  Google Scholar 

  203. Kable JW, Glimcher PW. The neural correlates of subjective value during intertemporal choice. Nat Neurosci. 2007;10:1625–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Peters J, Buchel C. Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. J Neurosci. 2009;29:15727–34.

    CAS  PubMed  Google Scholar 

  205. Levy I, Snell J, Nelson AJ, Rustichini A, Glimcher PW. Neural representation of subjective value under risk and ambiguity. J Neurophysiol. 2010;103:1036–47.

    PubMed  Google Scholar 

  206. FitzGerald TH, Seymour B, Dolan RJ. The role of human orbitofrontal cortex in value comparison for incommensurable objects. J Neurosci. 2009;29:8388–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. Neural predictors of purchases. Neuron. 2007;53:147–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Behrens TE, Hunt LT, Woolrich MW, Rushworth MF. Associative learning of social value. Nature. 2008;456:245–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Rolls ET, McCabe C, Redoute J. Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cereb Cortex. 2008;18:652–63.

    PubMed  Google Scholar 

  210. Wang XJ. Probabilistic decision making by slow reverberation in cortical circuits. Neuron. 2002;36:955–68.

    CAS  PubMed  Google Scholar 

  211. Kim JN, Shadlen MN. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat Neurosci. 1999;2:176–85.

    PubMed  Google Scholar 

  212. Rolls ET, Grabenhorst F, Parris BA. Neural systems underlying decisions about affective odors. J Cogn Neurosci. 2010;22:1069–82.

    PubMed  Google Scholar 

  213. Rangel A. The computation and comparison of value in goal-directed choice. In: Glimcher PW, Camerer CF, Fehr E, Poldrack RA, editors. Neuroeconomics: decision-making and the brain. London: Academic; 2009. p. 425–40.

    Google Scholar 

  214. Rushworth MF, Mars RB, Summerfield C. General mechanisms for making decisions? Curr Opin Neurobiol. 2009;19:75–83.

    CAS  PubMed  Google Scholar 

  215. Boorman ED, Behrens TE, Woolrich MW, Rushworth MF. How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron. 2009;62:733–43.

    CAS  PubMed  Google Scholar 

  216. Wunderlich K, Rangel A, O’Doherty JP. Neural computations underlying action-based decision making in the human brain. Proc Natl Acad Sci U S A. 2009;106:17199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wunderlich K, Rangel A, O’Doherty JP. Economic choices can be made using only stimulus values. Proc Natl Acad Sci U S A. 2010;107:15005–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Damasio AR. Neuroscience and the emergence of neuroeconomics. In: Glimcher PW, Camerer CF, Fehr E, Poldrack RA, editors. Neuroeconomics: decision-making and the brain. London: Academic; 2009. p. 209–13.

    Google Scholar 

  219. Rushworth MF, Behrens TE, Rudebeck PH, Walton ME. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci. 2007;11:168–76.

    CAS  PubMed  Google Scholar 

  220. Wardle J, Guthrie C, Sanderson S, Birch L, Plomin R. Food and activity preferences in children of lean and obese parents. Int J Obes Relat Metab Disord. 2001;25:971–7.

    CAS  PubMed  Google Scholar 

  221. McGloin AF, Livingstone MB, Greene LC, et al. Energy and fat intake in obese and lean children at varying risk of obesity. Int J Obes Relat Metab Disord. 2002;26:200–7.

    CAS  PubMed  Google Scholar 

  222. Franken IHA, Muris P. Individual differences in reward sensitivity are related to food craving and relative body weight in healthy women. Appetite. 2005;45:198–201.

    PubMed  Google Scholar 

  223. Hetherington MM. Cues to overeat: psychological factors influencing overconsumption. Proc Nutr Soc. 2007;66:113–23.

    PubMed  Google Scholar 

  224. Drewnowski A. Energy density, palatability, and satiety: implications for weight control. Nutr Rev. 1998;56:347–53.

    CAS  PubMed  Google Scholar 

  225. Salbe AD, DelParigi A, Pratley RE, Drewnowski A, Tataranni PA. Taste preferences and body weight changes in an obesity-prone population. Am J Clin Nutr. 2004;79:372–8.

    CAS  PubMed  Google Scholar 

  226. Rolls ET. The neural representation of oral texture including fat texture. J Texture Stud. 2011;42:137–56.

    Google Scholar 

  227. Verhagen JV, Kadohisa M, Rolls ET. The primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature and taste of foods. J Neurophysiol. 2004;92:1685–99.

    PubMed  Google Scholar 

  228. Rolls ET. Neural representation of fat texture in the mouth. In: Montmayeur J-P, Coutre J, editors. Fat detection: taste, texture, and postingestive effects. Boca Raton: CRC Press; 2010. p. 197–223.

    Google Scholar 

  229. Small DM, Voss J, Mak YE, et al. Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol. 2004;92:1892–903.

    PubMed  Google Scholar 

  230. Eldeghaidy S, Marciani L, McGlone F, et al. The cortical response to the oral perception of fat emulsions and the effect of taster status. J Neurophysiol. 2011;105:2572–81.

    PubMed  Google Scholar 

  231. Veldhuizen MG, Bender G, Constable RT, Small DM. Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses. 2007;32:569–81.

    PubMed  Google Scholar 

  232. Cerf-Ducastel B, Van de Moortele P-F, MacLeod P, Le Bihan D, Faurion A. Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study. Chem Senses. 2001;26:371–83.

    CAS  PubMed  Google Scholar 

  233. Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009;44:1008–21.

    PubMed  PubMed Central  Google Scholar 

  234. Wang GJ, Volkow ND, Felder C, et al. Enhanced resting activity of the oral somatosensory cortex in obese subjects. Neuroreport. 2002;13:1151–5.

    PubMed  Google Scholar 

  235. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117:924–35.

    PubMed  PubMed Central  Google Scholar 

  236. Stice E, Yokum S, Burger KS, Epstein LH, Small DM. Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci. 2011;31:4360–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Kaas JH. The future of mapping sensory cortex in primates: three of many remaining issues. Philos Trans R Soc Lond B Biol Sci. 2005;360:653–64.

    PubMed  Google Scholar 

  238. Kaas JH. Somatosensory system. In: Paxinos G, Mai JK, editors. The human nervous system. 3rd ed. London: Elsevier; 2012. p. 1074–109.

    Google Scholar 

  239. Kaas JH, Qi HX, Iyengar S. Cortical network for representing the teeth and tongue in primates. Anat Rec. 2006;288:182–90.

    Google Scholar 

  240. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005;293:1861–7.

    CAS  PubMed  Google Scholar 

  241. Krebs JR. The Croonian Lecture 2004. Risk: food, fact and fantasy. Philos Trans R Soc Lond B Biol Sci. 2005;360:1133–44.

    PubMed  Google Scholar 

  242. Schwartz MW, Porte D. Diabetes, obesity, and the brain. Science. 2005;307:375–9.

    CAS  PubMed  Google Scholar 

  243. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.

    CAS  PubMed  Google Scholar 

  244. Rolls ET. Understanding the mechanisms of food intake and obesity. Obes Rev. 2007;8:67–72.

    PubMed  Google Scholar 

  245. Davis C, Patte K, Levitan R, et al. From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite. 2007;48:12–9.

    PubMed  Google Scholar 

  246. Zimmerman FJ. Using marketing muscle to sell fat: the rise of obesity in the modern economy. Annu Rev Public Health. 2011;32:285–306.

    PubMed  Google Scholar 

  247. Harris JL, Brownell KD, Bargh JA. The food marketing defense model: integrating psychological research to protect youth and inform public policy. Soc Issues Policy Rev. 2009;3:211–71.

    PubMed  PubMed Central  Google Scholar 

  248. Downs JS, Loewenstein G, Wisdom J. Strategies for promoting healthier food choices. Am Econ Rev. 2009;99:159–64.

    Google Scholar 

  249. Just DR, Payne CR. Obesity: can behavioral economics help? Ann Behav Med. 2009;38 Suppl 1:S47–55.

    PubMed  Google Scholar 

  250. Kiesel K, McCluskey JJ, Villas-Boas SB. Nutritional labeling and consumer choices. Annu Rev Resour Econ. 2011;3:141–58.

    Google Scholar 

  251. Jackendoff R. Foundations of language. Oxford: Oxford University Press; 2002.

    Google Scholar 

  252. Berwick RC, Chomsky N. The biolinguistic program: the current state of its development. In: Di Sciullo AM, Boeckx C, editors. The biolinguistic enterprise: new perspectives on the evolution and nature of the human language faculty. Oxford: Oxford University Press; 2011. p. 19–41.

    Google Scholar 

  253. Sharot T. The optimism bias. Curr Biol. 2011;21:R941–5.

    CAS  PubMed  Google Scholar 

  254. Sharot T, Riccardi AM, Raio CM, Phelps EA. Neural mechanisms mediating optimism bias. Nature. 2007;450:102–5.

    CAS  PubMed  Google Scholar 

  255. Loewenstein G, Brennan T, Volpp KG. Asymmetric paternalism to improve health behaviors. JAMA. 2007;298:2415–7.

    CAS  PubMed  Google Scholar 

  256. Thaler RH, Sunstein CR. Nudge: improving decisions about health, wealth and happiness. New Haven: Yale University Press; 2008.

    Google Scholar 

  257. McClure SM, Li J, Tomlin D, et al. Neural correlates of behavioral preference for culturally familiar drinks. Neuron. 2004;44:379–87.

    CAS  PubMed  Google Scholar 

  258. Yamaguchi S. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J Food Sci. 1967;32:473–8.

    CAS  Google Scholar 

  259. Rifkin B, Bartoshuk LM. Taste synergism between monosodium glutamate and disodium 5′-guanylate. Physiol Behav. 1980;24:1169–72.

    CAS  PubMed  Google Scholar 

  260. Yamaguchi S, Ninomiya K. Umami and food palatability. J Nutr. 2000;130:921S–6.

    CAS  PubMed  Google Scholar 

  261. Yaxley S, Rolls ET, Sienkiewicz ZJ. Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol. 1990;63:689–700.

    CAS  PubMed  Google Scholar 

  262. Yaxley S, Rolls ET, Sienkiewicz ZJ. The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav. 1988;42:223–9.

    CAS  PubMed  Google Scholar 

  263. Plassmann H, O’Doherty J, Shiv B, Rangel A. Marketing actions can modulate neural representations of experienced pleasantness. Proc Natl Acad Sci U S A. 2008;105:1050–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Rolls ET, Grabenhorst F, Margot C, da Silva MAAP, Velazco MI. Selective attention to affective value alters how the brain processes olfactory stimuli. J Cogn Neurosci. 2008;20:1815–26.

    PubMed  Google Scholar 

  265. Hare TA, Malmaud J, Rangel A. Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. J Neurosci. 2011;31:11077–87.

    CAS  PubMed  Google Scholar 

  266. Bollinger B, Leslie P, Sorensen A. Calorie posting in chain restaurants. Am Econ J Econ Policy. 2011;3:91–128.

    Google Scholar 

  267. Jenison RL, Rangel A, Oya H, Kawasaki H, Howard MA. Value encoding in single neurons in the human amygdala during decision making. J Neurosci. 2011;31:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Phelps EA. Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol. 2006;57:27–53.

    PubMed  Google Scholar 

  269. Mookherjee BD, Trenkle RW, Wilson RA. The chemistry of flowers, fruits and spices: live vs. dead, a new dimension in fragrance research. Pure Appl Chem. 1990;62:1357–64.

    CAS  Google Scholar 

  270. Ohloff G. Scent and fragrances. Berlin: Springer; 1994.

    Google Scholar 

  271. Shepherd GM. Smell images and the flavour system in the human brain. Nature. 2006;444:316–21.

    CAS  PubMed  Google Scholar 

  272. Zou Z, Buck LB. Combinatorial effects of odorant mixes in olfactory cortex. Science. 2006;311:1477–81.

    CAS  PubMed  Google Scholar 

  273. Wilson DA, Kadohisa M, Fletcher ML. Cortical contributions to olfaction: plasticity and perception. Semin Cell Dev Biol. 2006;17:462–70.

    PubMed  Google Scholar 

  274. Giraudet P, Berthommier F, Chaput M. Mitral cell temporal response patterns evoked by odor mixtures in the rat olfactory bulb. J Neurophysiol. 2002;88:829–38.

    PubMed  Google Scholar 

  275. Kanwisher N, Wojciulik E. Visual attention: insights from brain imaging. Nat Rev Neurosci. 2000;1:91–100.

    CAS  PubMed  Google Scholar 

  276. Downar J, Crawley AP, Mikulis DJ, Davis KD. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci. 2000;3:277–83.

    CAS  PubMed  Google Scholar 

  277. Taylor SL, Roberts M. Odor and cognitive alteration of the contingent negative variation. Chem Senses. 1990;15:537–45.

    Google Scholar 

  278. Rolls ET, Deco G. Computational neuroscience of vision. Oxford: Oxford University Press; 2002.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Edmund T. Rolls for collaboration on much of the work reviewed in this chapter. Many of the experiments described were performed in the Rolls laboratory at Oxford, and many of the theoretical concepts presented here were pioneered by Edmund Rolls or developed in collaboration with him. The writing of this chapter was supported by a Research Fellowship at Selwyn College, Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Grabenhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grabenhorst, F. (2014). Brain Systems for the Pleasure of Food and Other Primary Rewards. In: Ritsner, M. (eds) Anhedonia: A Comprehensive Handbook Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8591-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8591-4_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8590-7

  • Online ISBN: 978-94-017-8591-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics