Skip to main content

Leaf: Light Capture in the Photosynthetic Organ

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

Terrestrial photosynthesis fixes about half the carbon on the planet and most of that photosynthesis occurs in chloroplasts in the leaves of higher plants. Leaves protect the chloroplasts, distribute them for light interception, and provide enough surface area interfacing with the atmosphere to facilitate maximum carbon dioxide uptake. There is a balancing act between light levels and carbon dioxide supply: insufficient quantities of either one limit the amount of photosynthesis that a leaf can conduct. When leaves develop under low light they are usually thin because light harvesting limits the amount of carbon that can be fixed and photosynthesis is concentrated within a few cell layers. When leaves develop under high light they are usually thick and light absorption is distributed over many cell layers, greatly increasing the amount of carbon that can be fixed per unit leaf area. In nature, light is rarely constant and leaves are often exposed to too little or too much light. This chapter describes adaptations at the level of the leaf that control the amount of light that is absorbed by the photosynthetic tissues. Some of these adaptations are anatomical and the epidermis is the first optical boundary that can play a key role in controlling entry of light into leaves. The anatomy of the photosynthetic tissues and the directional quality of the ambient light also interact to determine the light absorption profile within the tissues, which sets an energetic boundary on the amount of photosynthesis that can be conducted within the individual cell layers. Other adaptations provide for screening of excess light by pigments and fine-tuning of light absorption through chloroplast movement. Additional adaptations occur at the biochemical and whole-plant level to balance light absorption with carbon fixation and this chapter concentrates on the intermediate level: the leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FR:

– – Far red;

θi :

– – Angle of incidence;

n :

– – Refractive index;

PAR:

– – Photosynthetically active region of the spectrum;

UV:

– – Ultraviolet

References

  • Archetti M, Döring TF, Hagen SB, Hughes NM, Leather SR, Lee DW, Lev-Yadun S, Manetas Y, Ougham HJ, Schaberg PG, Thomas H (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 24:166–173

    Article  PubMed  Google Scholar 

  • Bone RA, Lee DW, Norman JM (1985) Epidermal cells functioning as lenses in leaves of tropical rain-forest plants. App Opt 24:1408–1412

    Article  CAS  Google Scholar 

  • Brodersen CR, Vogelmann TC (2007) Do epidermal lens cells facilitate the absorptance of diffuse light? Am J Bot 94:1061–1066

    Article  PubMed  Google Scholar 

  • Brodersen CR, Vogelmann TC (2010) Do changes in light direction affect absorption profiles? Funct Plant Biol 37:403–412

    Article  Google Scholar 

  • Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: prospects for UV-acclimation in higher plants. Physiol Plant 58:445–450

    Article  CAS  Google Scholar 

  • Chazdon RL (1986) Light variation and carbon gain in rain forest understorey palms. J Ecol 74:995–1012

    Article  Google Scholar 

  • Clark J, Lister G (1975) Photosynthetic action spectra of trees. II. The relationship of cuticle structure to the visible and ultraviolet spectral properties of needles of four coniferous species. Plant Physiol 55:407–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  CAS  PubMed  Google Scholar 

  • Davies KM (2004) Plant pigments and their manipulation. Blackwell Publishing, Oxford

    Google Scholar 

  • Davis PA, Caylor S, Whippo CW, Hangarter RP (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environ 34:2047–2059

    Article  CAS  PubMed  Google Scholar 

  • Döring TF, Archetti M, Hardie J (2009) Autumn leaves seen through herbivore eyes. Proc R Soc B 276:121–127

    Article  PubMed Central  PubMed  Google Scholar 

  • Doucet S, Meadows MG (2009) Iridescence: a functional perspective. JRS Interface 6:S115–S132

    Article  Google Scholar 

  • Ehleringer J (1981) Leaf absorptances of Mohave and Sonoran Desert plants. Oecologia 49:36–370

    Google Scholar 

  • Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104

    Article  Google Scholar 

  • Evans JR, Vogelmann TC (2003) Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ 26:547–560

    Article  CAS  Google Scholar 

  • Evans JR, Vogelmann TC, Williams WE, Gorton HL (2004) Chloroplast to leaf. In: Smith WK, Vogelmann TC, Critchley C (eds) (2005) Photosynthetic adaptation: chloroplast to landscape. Ecological studies, vol 178. Springer, New York, pp 15–41

    Chapter  Google Scholar 

  • Feild TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gausman HW, Allen WA, Escobar DE (1974) Refractive index of plant cell walls. App Opt 13:109–111

    Article  CAS  Google Scholar 

  • Glover BJ, Whitney HM (2010) Sturctural colour and iridescence in plants: the poorly studied relations of pigment colour. Ann Bot 105:505–511

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorton HL, Vogelmann TC (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol 112:879–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorton HL, Herbert SK, Vogelmann TC (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Plant Physiol 132:1529–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorton HL, Brodersen CR, Williams WE, Vogelmann TC (2010) Measurement of the optical properties of leaves under diffuse light. Photochem Photobiol 86:1076–1083

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Lee DW (1996) Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. Am J Bot 83:45–50

    Article  Google Scholar 

  • Gould KS, Lister C (2005) Flavonoid functions in plants. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry, and applications. CRC, Boca Raton, pp 397–441

    Chapter  Google Scholar 

  • Gould KS, Vogelmann TC, Han T, Clearwater MJ (2002) Profiles of photosynthesis within red and green leaves of Quintinia serrata A. Cunn. Physiol Plant 116:127–133

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Dudle DA, Neufeld HS (2010) Why some stems are red: cauline anthocyanins shield photosystem II against high light stress. J Exp Bot 61:2707–2717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham RM, Lee DW, Norstog K (1993) Physical and ultrastructoral basis of blue leaf iridescence in two neotropical ferns. Amer J Bot 80:198–203

    Article  Google Scholar 

  • Grant L (1987) Diffuse and specular characteristics of leaf reflectance. Rem Sens Environ 22:309–322

    Article  Google Scholar 

  • Hatier J-HB, Gould KS (2008) Anthocyanin function in vegetative organs. In: Gould KS, Davies K, Winefield C (eds) Anthocyanins: biosynthesis, functions, and application. Springer, New York, pp 1–19

    Chapter  Google Scholar 

  • Hébant C, Lee DW (1984) Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves. Amer J Bot 71:216–219

    Article  Google Scholar 

  • Hernandez I, Alegre L, Breusegem FV, Munne-Bosch S (2008) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic bands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Yoshioka S (2005) Structural colors in nature: the role of regularity and irregularity in the structure. Chem Phys Chem 6:1442–1459

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Yoshioka S, Kawagoe K (2002) Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc London B Biol Sci 269:1417–1421

    Article  Google Scholar 

  • Koller D (1990) Light-driven leaf movements. Plant Cell Environ 13:615–632

    Article  Google Scholar 

  • Le Gouallec J, Cornic G, Blanc P (1990) Relations between sunfleck sequences and photoinhibition of photosynthesis in a tropical rain forest understory herb. Amer J Bot 77:999–1006

    Article  Google Scholar 

  • Lee DW (1991) Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature 349:260–262

    Article  Google Scholar 

  • Lee DW (2000) Structural fruit coloration in Delarbrea michieana (Araliaceae). Int J Plant Sci 161:297–300

    Article  PubMed  Google Scholar 

  • Lee DW (2009) Plant tissue optics: micro- and nanostructures. In: Martin-Palma RJ, Lakhtakia A (eds) Biomimetics and bioinspiration. SPIE, San Diego, pp 740104-1–740104-11

    Google Scholar 

  • Lee DW, Lowry JB (1975) The physical basis and ecological significance of iridescence in blue plants. Nature 254:50–51

    Article  Google Scholar 

  • Manetas Y (2006) Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201:163–177

    Article  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Zhigalova TV, Naqvi KR (2009) Light absorption by isolated chloroplasts and leaves: effects of scattering and ‘packing’. Photosyn Res 102:31–41

    Article  CAS  PubMed  Google Scholar 

  • Nishio JN (2000) Why are plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548

    Article  CAS  Google Scholar 

  • Pfitsch WA, Pearcy RW (1989) Daily carbon gain by Adenocaulon bicolor (Asteraceae), a redwood forest understory herb, in relation to its light environment. Oecologia 80:465–470

    Article  Google Scholar 

  • Pfündel EE, Agati G, Cerovic ZG (2006) Optical properties of plant surfaces. In: Riederer M, Müller C (eds) Annual plant reviews. Blackwell, Oxford, pp 216–249

    Google Scholar 

  • Powles SB, Björkman O (1981) Leaf movement in the shade species Oxalis oregana. II. Role in protection against injury by intense light. Carnegie Inst Wash Yearb 80:63–66

    Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Amer J Bot 83:679–686

    Article  CAS  Google Scholar 

  • Sheue CR, Sarafis V, Kiew R, Liu HY, Salino A, Kuo-Huang LL, UYang YP, Tsai CC, Lin CH, Yong JWH, Ku MSB (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Amer J Bot 94:1922–1929

    Article  Google Scholar 

  • Sinclair R, Thomas DA (1970) Optical properties of leaves of some species in arid South Australia. Aust J Bot 18:261–273

    Article  Google Scholar 

  • Steyn WJ, Wand SE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    Article  CAS  Google Scholar 

  • Sun J, Nishio JN, Vogelmann TC (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026

    Article  CAS  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tholen D, Boom C, Noguchi KO, Ueda S, Katase T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700

    Article  CAS  PubMed  Google Scholar 

  • Thomas KR, Kolle M, Whitney HM, Glover BJ, Steiner U (2010) Function of blue iridescence in tropical understorey plants. JRS Interface 7:1699–1707

    Article  Google Scholar 

  • van den Berg AK, Vogelmann TC, Perkins TD (2009) Anthocyanin influence on light absorption within juvenile and senescing sugar maple leaves – do anthocyanins function as photoprotective visible light screens? Funct Pl Biol 36:793–800

    Article  Google Scholar 

  • Vanderbilt VC, Grant L (1985) Plant canopy specular reflectance model. IEEE Trans Geosci Rem Sens 23:722–730

    Article  Google Scholar 

  • Vigneron JP, Rassart M, Vértesy Z, Kertész K, Sarrazin M, Biró L, Ertz D, Lousse V (2005) Optical structure and function of the white filamentary hair covering the edelweiss bracts. Phys Rev E 71

    Google Scholar 

  • Vogelmann TC (1993) Plant tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251

    Article  Google Scholar 

  • Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323

    Article  Google Scholar 

  • Vogelmann TC, Han T (2000) Measurement of profiles of absorbed light within spinach leaves. Plant Cell Environ 23:1303–1312

    Article  CAS  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc Lon B 266:1403–1411

    Article  Google Scholar 

  • Whitney HM, Kolle M, Alvarez-Fernandez R, Steiner U, Glover BJ (2009a) Contributions of iridescence to floral patterning. Comm Int Biol 2:230–232

    Article  Google Scholar 

  • Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ (2009b) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133

    Article  CAS  PubMed  Google Scholar 

  • Williams WE, Gorton HL, Witiak SM (2003) Chloroplast movements in the field. Plant Cell Environ 26:2005–2014

    Article  Google Scholar 

  • Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47:656–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woolley JT (1975) Refractive index of soybean leaf cell walls. Plant Physiol 55:172–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank William E. Williams for his insightful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Vogelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vogelmann, T.C., Gorton, H.L. (2014). Leaf: Light Capture in the Photosynthetic Organ. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_19

Download citation

Publish with us

Policies and ethics