Skip to main content

The Positive Effects of Trophic Interactions in Soil

  • Chapter
  • First Online:
Interactions in Soil: Promoting Plant Growth

Part of the book series: Biodiversity, Community and Ecosystems ((BECO,volume 1))

Abstract

The feedbacks between plants and their soil communities determine primary production and moderates the ecosystem services they both provide. Feedbacks can be perceived as positive or negative, but historically, the greatest attention has be given to the role of negative feedbacks in shaping plant production and community development. Although we understand the role of mycorrhizae and bacterial symbionts fairly well, fewer studies have addressed the role of positive feedbacks and facilitation associated with trophic interactions and food web activity. Due to the close spatial scale of rhizosphere food webs, they function more like a cycle than a linear food chain. This results in consumer mediated nutrient cycling that frequently feeds back positively on plant production even when considering herbivory as an isolated process. Herbivores enrich the environment by increasing organic matter and high quality mineral nutrients to the soil. A process mediated by the stoichiometric imbalance between consumers and resources. Likewise, the functional and taxonomic biodiversity of food webs in soils will understandably affect the degree of positive feedbacks to plant production. This is important to consider in an increasingly human dominated world. It is possible that community composition and functioning in disturbed environments is driven to a greater degree by positive rather than negative feedbacks. In this environment, soils will play an essential role in maintaining ecosystem health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5(7):309–313. doi:10.1016/s1360-1385(00)01679-4

    Article  CAS  Google Scholar 

  • Allen MF, Kitajima K (2013) In situ high-frequency observations of mycorrhizas. New Phytol 200(1):222–228. doi:10.1111/nph.12363

    Article  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303. doi:10.1146/annurev.phyto.41.052002.095518

    Article  CAS  Google Scholar 

  • Anderson JM, Leonard MA, Ineson P, Huish S (1985) Faunal biomass – a key component of a general model or nitrogen mineralization. Soil Biol Biochem 17(5):735–737. doi:10.1016/0038-0717(85)90057-4

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32. doi:10.1016/j.tplants.2003.11.008

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84(9):2258–2268

    Article  Google Scholar 

  • Bardgett R, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change, Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30(14):1867–1878. doi:10.1016/s0038-0717(98)00069-8

    Article  CAS  Google Scholar 

  • Bardgett RD, Denton CS, Cook R (1999) Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecol Lett 2(6):357–360

    Article  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20(11):634–641. doi:10.1016/j.tree.2005.08.005

    Article  Google Scholar 

  • Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol 152:139–149

    Article  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20(11):617–624. doi:10.1016/j.tree.2005.08.006

    Article  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34(11):1709–1715. doi:10.1016/s0038-0717(02)00157-8

    Article  CAS  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1–2):213–233. doi:10.1007/s11104-009-0013-2

    Article  CAS  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18(3):119–125

    Article  Google Scholar 

  • Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9(1–3):123–135. doi:10.1016/s0929-1393(98)00066-3

    Article  Google Scholar 

  • Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92(5):1027–1035

    Article  Google Scholar 

  • Cebrian J, Shurin J, Borer ET, Cardinale BJ, Ngai JT, Smith MD, Fagan WF (2009) Producer nutritional quality controls ecosystem trophic structure. PLoS One 4:e4929

    Article  Google Scholar 

  • Chase JM (2000) Are there real differences among aquatic and terrestrial food webs? Trends Ecol Evol 15(10):408–412

    Article  Google Scholar 

  • Cherif M, Loreau M (2013) Plant – herbivore – decomposer stoichiometric mismatches and nutrient cycling in ecosystems. Proc R Soc B-Biol Sci 280(1754):20122453. doi:10.1098/rspb.2012.2453

    Article  Google Scholar 

  • Clarholm M (1994) The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley-Sayce, Chichester, pp 221–230

    Google Scholar 

  • Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49(6):479–497. doi:10.1016/j.pedobi.2005.05.006

    Article  CAS  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2011) Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 14(11):1134–1142. doi:10.1111/j.1461-0248.2011.01682.x

    Article  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2012) Functional and ecological consequences of saprotrophic fungus-grazer interactions. Isme J 6(11):1992–2001. doi:10.1038/ismej.2012.53

    Article  CAS  Google Scholar 

  • Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, Wieinbauer M (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454:1084–1088

    Article  CAS  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  Google Scholar 

  • de Ruiter PC, Moore JC, Zwart KB, Bouwman LA, Hassink J, Bloem J, de Vos JA, Marinissen JCY, Didden WAM, Lebbink G, Brussard L (1993) Simulation of nitrogen mineralization in the belowground food webs of two winter wheat fields. J Appl Ecol 30:95–106

    Article  Google Scholar 

  • Denton CS (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165

    Article  CAS  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. CRC Press, Boca Raton

    Book  Google Scholar 

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  Google Scholar 

  • Eisenhauer N, Reich PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93(10):2227–2240

    Article  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73(21):7059–7066. doi:10.1128/aem.00358-07

    Article  CAS  Google Scholar 

  • Gallagher FJ, Pechmann I, Holzapfel C, Grabosky J (2011) Altered vegetative assemblage trajectories within an urban brownfield. Environ Pollut 159(5):1159–1166. doi:10.1016/j.envpol.2011.02.007

    Article  CAS  Google Scholar 

  • Gough L, Moore JC, Shaver GR, Simpson RT, Johnson DR (2012) Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Ecology 93(7):1683–1694

    Article  Google Scholar 

  • Grimm NB, Morgan Grove J, Pickett ST, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems: urban ecological systems present multiple challenges to ecologists-pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. Bioscience 50(7):571–584

    Article  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82(9):2397–2402

    Article  Google Scholar 

  • Hessen DO, Agren GI, Anderson TR, Elser JJ, de Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85(5):1179–1192

    Article  Google Scholar 

  • Hofer C, Gallagher FJ, Holzapfel C (2010) Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ Pollut 158(5):1207–1213. doi:10.1016/j.envpol.2010.01.018

    Article  CAS  Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6(6):489–503. doi:10.1016/j.baae.2005.04.001

    Article  Google Scholar 

  • Hol WHG, de Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM, van Dam NM, van Veen JA, van der Putten WH (2010) Reduction of rare soil microbes modifies plant-herbivore interactions. Ecol Lett 13(3):292–301. doi:10.1111/j.1461-0248.2009.01424.x

    Article  Google Scholar 

  • Hooper DU, Chapin SF III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer JH, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Jiang Y, Wu Y, Xu W, Cheng Y, Chen J, Xu L, Hu F, Li H (2012) IAA-producing bacteria and bacterial-feeding nematodes promote Arabidopsis thaliana root growth in natural soil. Eur J Soil Biol 52:20–26

    Article  CAS  Google Scholar 

  • Keiblinger KM, Hall EK, Wanek W, Szukics U, Hammerle I, Ellersdorfer G, Bock S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010) The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol Ecol 73(3):430–440. doi:10.1111/j.1574-6941.2010.00912.x

    CAS  Google Scholar 

  • Krumins JA, van Oevelen D, Bezemer TM, De Deyn GB, Hol WHG, van Donk E, de Boer W, de Ruiter PC, Middelburg JJ, Monroy F, Soetaert K, Thebault E, de Koppel J, van Veen JA, Viketoft M, van der Putten WH (2013) Soil and freshwater and marine sediment food webs: their structure and function. Bioscience 63(1):35–42. doi:10.1525/bio.2013.63.1.8

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32(11–12):1485–1498. doi:10.1016/s0038-0717(00)00084-5

    Article  CAS  Google Scholar 

  • Lussenhop J (1992) Mechanisms of microarthropod-microbial interactions in soil. In: Begon M, Fitter AH (eds) Advances in ecological research, vol 23. Academic, London

    Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321(5889):684–686. doi:10.1126/science.1159792

    Article  CAS  Google Scholar 

  • Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14(1):36–41

    Article  Google Scholar 

  • McNaughton SJ (1976) Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191:92–94

    Article  CAS  Google Scholar 

  • Miki T, Ushio M, Fukui S, Kondoh M (2010) Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proc Natl Acad Sci 107(32):14251–14256

    Article  CAS  Google Scholar 

  • Mikola J, Setala H, Virkajarvi P, Saarijarvi K, Ilmarinen K, Voigt W, Vestberg M (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79(2):221–244. doi:10.1890/08-1846.1

    Article  Google Scholar 

  • Moore JC, McCann K, Setala H, de Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics. Ecology 84(4):846–857

    Article  Google Scholar 

  • Newell K (1984) Interactions between two decomposer basidiomycetes and a collembolan under Sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol Biochem 16(3):235–239

    Article  Google Scholar 

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88(7):1611–1621

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92(3):331–362. doi:10.1016/j.jenvman.2010.08.022

    Article  CAS  Google Scholar 

  • Piskiewicz AM, Duyts H, Berg MP, Costa S, van der Putten WH (2007) Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes. Oecologia 152:505–514

    Article  Google Scholar 

  • Preisser EL (2003) Field evidence for a rapidly cascading underground food web. Ecology 84(4):869–874. doi:10.1890/0012-9658(2003)084[0869:fefarc]2.0.co;2

    Article  Google Scholar 

  • Revilla TA, Veen GF, Eppinga MB, Weissing FJ (2013) Plant-soil feedbacks and the coexistence of competing plants. Theor Ecol 6(2):99–113. doi:10.1007/s12080-012-0163-3

    Article  Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84(9):2281–2291. doi:10.1890/02-0298

    Article  Google Scholar 

  • Ruess RW, McNaughton SJ (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos 49(1):101–110. doi:10.2307/3565559

    Article  Google Scholar 

  • Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2):296–303

    Article  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 338:579–582

    Article  Google Scholar 

  • Sinsabaugh RL, Hill BH, Shah JJF (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462(7274):795–U117. doi:10.1038/nature08632

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton

    Google Scholar 

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179(3):303–314

    Article  Google Scholar 

  • Tu C, Koenning SR, Hu S (2003) Root-parasitic nematodes enhance soil microbial activities and nitrogen mineralization. Microb Ecol 46(1):134–144. doi:10.1007/s00248-002-1068-2

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  Google Scholar 

  • van der Putten WH, van Dijk C, Peters BAM (1993) Plant specific soil borne diseases contribute to succession in foredune vegetation. Nature 362:53–56

    Article  Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276. doi:10.1111/1365-2745.12054

    Article  Google Scholar 

  • Veen G, Olff H, Duyts H, Van Der Putten WH (2010) Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology 91(3):828–835

    Article  CAS  Google Scholar 

  • Wall DH (ed) (2004) Sustaining biodiversity and ecosystem services in soils and sediments. Scope 64. Island Press, Washington, DC

    Google Scholar 

  • Wall DH, Bardgett RD, Kelly EF (2010) Biodiversity in the dark. Nat Geosci 3(5):297–298. doi:10.1038/ngeo849

    Article  CAS  Google Scholar 

  • Wardle DA, Jonsson M (2010) Biodiversity effects in real ecosystems – a response to Duffy. Front Ecol Environ 8(1):10–11. doi:10.1890/10.wb.002

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  • Wu XW, Duffy JE, Reich PB, Sun SC (2011) A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. Ecol Monogr 81(2):313–328. doi:10.1890/10-0808.1

    Article  Google Scholar 

  • Yeates GW, Saggar S, Hedley CB, Mercer CF (1999) Increase in 14C-carbon translocation to the soil microbial biomass when five species of plant-parasitic nematodes infect roots of white clover. Nematology 1(3):295–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Adams Krumins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krumins, J.A. (2014). The Positive Effects of Trophic Interactions in Soil. In: Dighton, J., Krumins, J. (eds) Interactions in Soil: Promoting Plant Growth. Biodiversity, Community and Ecosystems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8890-8_4

Download citation

Publish with us

Policies and ethics