Skip to main content

Toward Intracellular Delivery and Drug Discovery: Stochastic Logic Networks as Efficient Computational Models for Gene Regulatory Networks

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

  • 1701 Accesses

Abstract

Biological functions are regulated through the interactions among genes, proteins and other molecules in a cell. Among various approaches to modeling gene regulatory networks (GRNs), Boolean networks (BNs) and its probabilistic extension, probabilistic Boolean networks (PBNs), have been effective means; in particular, PBNs consider molecular and genetic noise, so they provide significant insights into the understanding of the dynamics of GRNs. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and steady-state distribution of a PBN. This chapter discusses stochastic logic networks as computationally efficient gene network models. Initially, stochastic Boolean networks (SBNs) are presented as a novel implementation of PBNs. SBNs are based on the notions of stochastic logic and stochastic computation. To further exploit the simplicity of logical models, a multiple-valued network employs gene states that are not limited to binary values, thus providing a finer granularity in the modeling of GRNs. Subsequently, stochastic multiple-valued networks (SMNs) are presented for modeling the effects of noise and gene perturbation in a GRN. These novel logical models provide accurate and efficient simulations of probabilistic Boolean and multiple-valued networks (PBNs and PMNs). The analysis of a p53–Mdm2 network and a WNT5A network shows that the stochastic logic networks are efficient in evaluating the network dynamics and steady state distribution of gene networks under random gene perturbation. These techniques are potentially useful in the investigation of intracellular delivery and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GRN:

Gene regulatory network

BN:

Boolean network

GAP:

Gene activity profile

PBN:

Probabilistic Boolean network

SBN:

Stochastic Boolean network

PMN:

Probabilistic multiple-valued networks

SMN:

Stochastic multiple-valued network

STM:

State transition matrix

SSD:

Steady state distribution

MCMC:

Markov chain Monte Carlo

MC:

Monte Carlo

FSM:

Finite state machine

EL:

Equal or larger

ES:

Equal or smaller

TB:

Ternary buffer

TI:

Ternary inverter

DSBs:

Double strand breaks

References

  • Abdi A, Tahoori MB, Emamian ES (2008) Fault diagnosis engineering of digital circuits can identify vulnerable molecules in complex cellular pathways. Sci Signal 1(42):ra10

    Google Scholar 

  • Abou-Jaoude W, Ouattara D, Kaufman M (2009) From structure to dynamics: frequency tuning in the p53–mdm2 network: I. logical approach. J Theor Biol 258(4):561–577. doi:10.1016/j.jtbi.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  • Adamatzky A (2003) On dynamically non-trivial three-valued logics: oscillatory and bifurcatory species. Chaos Solit Fract 18:917–936

    Article  CAS  Google Scholar 

  • Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. PNAS 101(27):9960–9965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aldana M, Coopersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. http://arXiv.org/abs/adap-org/9305001

  • Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53: understanding protein dynamics in single cells. Nature Rev Cancer 9:371–377

    Article  CAS  Google Scholar 

  • Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429

    Article  CAS  PubMed  Google Scholar 

  • Ching W, Zhang S, Ng M, Akutsu T (2007) An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics 23:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Ciliberto A, Novak B, Tyson JJ (2005) Steady states and oscillations in the p53–Mdm2 network. Cell Cycle 4:486–493

    Google Scholar 

  • de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103. doi:10.1089/10665270252833208

    Article  PubMed  Google Scholar 

  • Dougherty ER, Pal R, Qian X, Bittner ML, Datta A (2010) Stationary and structural control in gene regulatory networks: basic concepts. Int J Syst Sci 41(1):5–16

    Article  Google Scholar 

  • Dubrova E (2006) Random multiple-valued networks: theory and applications. In: Proceedings of international symposium on multiple-valued logic (ISMVL ’06), pp 27–33, May 2006

    Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Faryabi B, Vahedi G, Datta A, Chamberland JF, Dougherty ER (2009) Recent advances in intervention in Markovian regulatory networks. Curr Genomics 10(7):463–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaines BR (1969) Stochastic computing systems. Adv Inf Syst Sci 2:37–172

    Article  Google Scholar 

  • Garg A, Mendoza L, Xenarios I, DeMicheli G (2007) Modeling of multiple valued gene regulatory networks. In: Proceedings of 29th IEEE International Conference on Engineering in Medicine and Biology Society (EMBC ’07), pp. 1398–1404, Aug 2007

    Google Scholar 

  • Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:0033. doi: 10.1038/msb4100068

  • Glass L, Kauffman S (1973) The logical analysis of continuous non-linear biochemical control networks. J Theor Biol 39:103–129

    Article  CAS  PubMed  Google Scholar 

  • Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63

    Article  CAS  PubMed  Google Scholar 

  • Han J, Chen H, Liang J, Zhu P, Yang Z, Lombardi F (2013) A stochastic computational approach for accurate and efficient reliability evaluation. IEEE Trans Comput (in press)

    Google Scholar 

  • Harvey I, Bossomaier T (1997) Time out of joint: attractors in asynchronous random Boolean networks. In: Husbands P, Harvey I. (eds) Proceedings of 4th European conference on artificial life (ECAL97). MIT Press, New York, pp 67–75

    Google Scholar 

  • Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med 77:469–480

    Article  CAS  PubMed  Google Scholar 

  • Ivanov I, Pal R, Dougherty ER (2007) Dynamics preserving size reduction mappings for probabilistic Boolean networks. IEEE Trans Signal Process 55(5):2310–2322

    Article  Google Scholar 

  • Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9:770–780

    Article  CAS  PubMed  Google Scholar 

  • Karlebach G, Shamir R (2010) Minimally perturbing a gene regulatory network to avoid a disease phenotype: the glioma network as a test case. BMC Syst Biol 4:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. Theor Biol 22:437–467

    Article  CAS  Google Scholar 

  • Kervizic G, Corcos L (2008) Dynamical modeling of the cholesterol regulatory pathway with Boolean networks. BMC Syst Biol 2:99

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim S, Li H, Dougherty ER et al (2002) Can Markov chain models mimic biological regulation? J Biol Syst 10(4):337–357

    Article  Google Scholar 

  • Kitano H (2001) Foundations of systems biology. MIT Press, Massachusetts

    Google Scholar 

  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53–Mdm2 feedback loop in individual cells. Nat Genet 36:147–150

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cheng D (2010) Algebraic approach to dynamics of multivalued networks. Int J Bifurcat Chaos 20(3):561–582

    Article  Google Scholar 

  • Liang J, Han J (2012) Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst Biol 6:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo C, Wang X (2013) Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation. PLoS ONE 8(6):e66491. doi:10.1371/journal.pone.0066491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAdams HH, Shapiro L (1995) Circuit simulation of genetic networks. Science 269(5224):650

    Article  CAS  PubMed  Google Scholar 

  • Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murrugarra D, Veliz-Cuba A, Aguilar B, Arat S, Laubenbacher R (2012) Modeling stochasticity and variability in gene regulatory networks. EURASIP J Bioinform Syst Biol 1:5

    Article  Google Scholar 

  • Pal R (2010) Context-sensitive probabilistic Boolean networks: steady-state properties, reduction, and steady-state approximation. IEEE T Signal Proces 58(2):879–890

    Article  Google Scholar 

  • Pandey S, Wang R, Wilson L, Li S, Zhao Z, Gookin T, Assmann S, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 372. doi:10.1038/msb.2010.28

  • Qian X, Ivanov I, Ghaffari N, Dougherty ER (2009) Intervention in gene regulatory networks via greedy control policies based on long-run behavior. BMC Syst Biol 3:61

    Article  PubMed Central  PubMed  Google Scholar 

  • Qian X, Ghaffari N, Ivanov I, Dougherty ER (2010) State reduction for network intervention in probabilistic Boolean networks. Bioinformatics 26(24):3098–3104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenthal JS (1995) Minorization conditions and convergence rates for Markov chain Monte Carlo. J Am Stat Assoc 90:558–566

    Article  Google Scholar 

  • Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. ociety for Industrial & Applied Mathematics, U.S

    Google Scholar 

  • Shmulevich I, Dougherty ER, Zhang W (2002a) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. In: Proceedings of IEEE, vol 90, pp 1778–1792

    Google Scholar 

  • Shmulevich I, Dougherty ER, Kim S, Zhang W (2002b) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18:261–274

    Article  CAS  PubMed  Google Scholar 

  • Shmulevich I, Dougherty ER, Zhang W (2002c) Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 18(10):1319–1331

    Article  CAS  PubMed  Google Scholar 

  • Shmulevich I, Gluhovsky I, Hashimoto RF, Dougherty ER, Zhang W (2003) Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp Funct Genom 4:601–608. doi:10.1002/cfg.342

    Article  CAS  Google Scholar 

  • Thomas R, D’Ari R (1990) Biological feedback. CRC Press, Boca Raton

    Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • Volker LG, Conrad M (1998) The role of weak interactions in biological systems: the dual dynamic model. J Theor Biol 193:287–306

    Article  Google Scholar 

  • von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 43–98

    Google Scholar 

  • Weinberg RA (2006) The biology of cancer, 1st edn. Garland Science, New York

    Google Scholar 

  • Zhang S et al (2007) Simulation study in probabilistic Boolean network models for genetic regulatory networks. Int J Data Min Bioinformatics 1:217–240

    Article  Google Scholar 

  • Zhu P, Han J (2013) Stochastic multiple-valued gene networks. IEEE Trans Biomed Circuits Syst 8(1):42–53

    Google Scholar 

  • Zhu P, Han J (2014) Asynchronous stochastic boolean networks as gene network models. J Comput Biol (in press)

    Google Scholar 

  • Zhu P, Liang J, Han J (2014) Gene perturbation and intervention in context-sensitive stochastic boolean networks. BMC Syst Biol (in press)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) in a Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhu, P., Liang, J., Han, J. (2014). Toward Intracellular Delivery and Drug Discovery: Stochastic Logic Networks as Efficient Computational Models for Gene Regulatory Networks. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_17

Download citation

Publish with us

Policies and ethics