Skip to main content

Aligning Animal Models with Clinical Epilepsy: Where to Begin?

  • Chapter
  • First Online:
Issues in Clinical Epileptology: A View from the Bench

Abstract

Treatment of the epilepsies have benefitted immensely from study of animal models, most notably in the development of diverse anti-seizure medications in current clinical use. However, available drugs provide only symptomatic relief from seizures and are often ineffective. As a result, a critical need remains for developing improved symptomatic or disease-modifying therapies – or ideally, preventive therapies. Animal models will undoubtedly play a central role in such efforts. To ensure success moving forward, a critical question arises, namely “How does one make laboratory models relevant to our clinical understanding and treatment?” Our answer to this question: It all begins with a detailed understanding of the clinical phenotype one seeks to model. To make our case, we point to two examples – Fragile X syndrome and status epilepticus-induced mesial temporal lobe epilepsy – and examine how development of animal models for these distinct syndromes is based upon observations by astute clinicians and systematic study of the disorder. We conclude that the continuous and effective interaction of skilled clinicians and bench scientists is critical to the optimal design and study of animal models to facilitate insight into the nature of human disorders and enhance likelihood of improved therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annegers JF, Hauser WA, Shirts SB, Kurland LT (1987) Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 316:493–498

    Article  CAS  PubMed  Google Scholar 

  2. Ashley C, Wilkinson K, Reines D, Warren S (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Ari Y, Tremblay E, Ottersen OP (1980) Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 5:515–528

    Article  CAS  PubMed  Google Scholar 

  4. Bhakar AL, Dolen G, Bear MF (2012) The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 35:417–443

    Article  CAS  PubMed  Google Scholar 

  5. Chadman KK, Yang M, Crawley JN (2009) Criteria for validating mouse models of psychiatric diseases. Am J Med Genet B Neuropscyhiatr Genet 150B:1–11

    Article  Google Scholar 

  6. Chudley AE, Hagerman RJ (1987) Fragile X syndrome. J Pediatr 110:821–831

    Article  CAS  PubMed  Google Scholar 

  7. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P (2001) De novo mutations in the sodium-channel gene SCN1A causes severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Coffee B, Keith K, Albizua I, Malone T, Mowrey J, Sherman SL, Warren ST (2009) Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am J Hum Genet 85:503–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cornish K, Sudhalter V, Turk J (2004) Attention and language in fragile X. Ment Retard Dev Disabil Res Rev 10:11–16

    Article  PubMed  Google Scholar 

  10. Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL (1993) The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X permutation. Nat Genet 4:335–340

    Article  CAS  PubMed  Google Scholar 

  11. Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dudek EF, Clark S, Williams PA, Grabenstatter HL (2006) Kainate-induced status epilepticus: a chronic model of acquired epilepsy. In: Pitkanen A, Schwartzkroin PA, Moshe SL (eds) Models of seizures and epilepsy. Elsevier, Burlington, pp 415–432

    Google Scholar 

  13. Dunleavy M, Shinoda S, Schindler C, Ewart C, Dolan R, Gobbo OL, Kerskens CM, Henshall DC (2010) Experimental neonatal status epilepticus and the development of temporal lobe epilepsy with unilateral hippocampal sclerosis. Am J Pathol 176:330–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dutch-Belgian Fragile X Consort (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  15. French JA, Williamson PD, Thadani VM, Darey TM, Mattson RH, Spencer SS, Spencer DD (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34:774–780

    Article  CAS  PubMed  Google Scholar 

  16. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Capparelli EV, Adamson PC (2013) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia 54:141–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7

    Article  CAS  PubMed  Google Scholar 

  18. Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14:471–479

    Article  CAS  PubMed  Google Scholar 

  19. Hesdorffer DC, Shinnar S, Lewis DV, Moshe SL, Nordli DR Jr, Pellock JM, MacFall J, Shinnar RC, Masur D, Frank LM, Epstein LG, Litherland C, Seinfeld S, Bello JA, Chan S, Bagiella E, Sun S (2012) FEBSTAT study team. Design and phenomenology of the FEBSTAT study. Epilepsia 53:1471–1480

    Article  PubMed Central  PubMed  Google Scholar 

  20. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, Sano T, O’Tuathaigh C, Waddington JL, Prenter S, Delanty N, Farrell MA, O’Brien DF, Conroy RM, Stallings RL, DeFelipe J, Henshall DC (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18:1087–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Krueger DD, Bear MF (2011) Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med 62:411–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Gu B, He XP, Joshi RB, Wackerle HD, Rodriguiz RM, Wetsel WC, McNamara JO (2013) Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 79:31–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lubs HA (1969) A marker X chromosome. Am J Hum Genet 21:231–244

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Luby M, Spencer DD, Kim JH, deLanerolle N, McCarthy G (1995) Hippocampal MRI volumetrics and temporal lobe substrates in medial temporal lobe epilepsy. Magn Reson Imaging 13:1065–1071

    Article  CAS  PubMed  Google Scholar 

  26. Martin JP, Bell J (1943) A pedigree of mental defect showing sex-linkage. J Neurol Psychiatry 6:154–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, Matsushima S, Taki W, Henshall DC (2008) Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res 1213:140–151

    Article  CAS  PubMed  Google Scholar 

  28. Nance MA, Hauser WA, Anderson VE (1997) Genetic diseases associated with epilepsy. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook, 1st edn. Lippincott-Raven, Philadelphia, pp 197–209

    Google Scholar 

  29. Neul JL, Kaufmann WE, Glaze DG, Chirstodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK, RettSearch Consortium (2010) Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 68:944–950

    Article  PubMed Central  PubMed  Google Scholar 

  30. Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile X syndrome. Annu Rev Genomics Hum Genet 8:109–129

    Article  CAS  PubMed  Google Scholar 

  31. Pieretti M, Zhang FP, Fu Y-H, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–822

    Article  CAS  PubMed  Google Scholar 

  32. Putnam TJ, Merritt HH (1937) Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85:525–526

    Article  CAS  PubMed  Google Scholar 

  33. Raol YH, Brooks-Kayal AR (2012) Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci 105:57–82

    Article  CAS  PubMed  Google Scholar 

  34. Reid CA, Berkovic SF, Petrou S (2009) Mechanisms of inherited epilepsies. Prog Neurobiol 87:41–57

    Article  CAS  PubMed  Google Scholar 

  35. Sarkisian MR (2001) Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav 2:201–216

    Article  PubMed  Google Scholar 

  36. Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G (1993) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291–298

    Article  CAS  PubMed  Google Scholar 

  37. Tsai MH, Chuang YC, Chang HW, Chang WN, Lai SL, Huang CR, Tsai NW, Wang HC, Lin YJ, Lu CH (2009) Factors predictive of outcome in patients with de novo status epilepticus. Q J Med 102:57–62

    Article  Google Scholar 

  38. VanLandingham KE, Heinz ER, Cavazos JE, Lewis DV (1998) Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 43:413–426

    Article  CAS  PubMed  Google Scholar 

  39. Verkerk AJMH, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DPA, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, van Ommen GJB, Blonden LAJ, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914

    Article  CAS  PubMed  Google Scholar 

  40. Weiler IJ, Greenough WT (1993) Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc Natl Acad Sci U S A 90:7168–7171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wieser HG (2004) ILAE Commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714

    Article  PubMed  Google Scholar 

  42. Wilkinson KD, Keene JD, Darnell RB, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–488

    Article  PubMed  Google Scholar 

  43. Williamson PD, French JA, Thadani VM, Kim JM, Novelly RA, Spencer SS, Spencer DD, Mattson RH (1993) Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology. Ann Neurol 34:781–787

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dedicated to Philip A. Schwartzkroin. A dear friend and a wonderful scientist whose thought-provoking questions have shaped thinking in this field for at least three decades.

Other Acknowledgements

This work was supported by NINDS grants RO1NS56217 (JOM), RO1NS060728 (JOM), and F31NS078847 (SCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James O. McNamara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harward, S.C., McNamara, J.O. (2014). Aligning Animal Models with Clinical Epilepsy: Where to Begin?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics