Skip to main content

Anthropogenic Effects in Landscapes: Historical Context and Spatial Pattern

  • Chapter
  • First Online:
Biocultural Landscapes

Abstract

Bio-cultural landscapes are characterized by anthropogenic pattern features, of which the measurement constitutes a key step in landscape analysis. Metrics and strategies for this measurement of anthropogenic patterns and their dynamics are discussed, considering the pattern/process paradigm, the patch-corridor-matrix model and the complementarity of landscape composition and configuration as conceptual benchmarks. Historically, noticeable anthropogenic effects are accepted to have appeared in landscapes after the invention of agriculture and further trends of landscape change could be linked to the development of agriculture. Through time, a sequence of landscape dynamics with three stages is expected, in which a natural landscape matrix is initially substituted by an agricultural one; urban patch types will later on dominate the matrix as a consequence of ongoing urbanization. The importance of the development of agriculture and its productivity for the evolution of settlements, villages and cities is emphasized. Anthropogenic change of landscapes confirms the status of geographical space as a limited resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alig RJ, Kline JD, Lichtenstein M (2004) Urbanization in the urban landscape: looking ahead in the 21st century. Landsc Urban Plan 69:219–234

    Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Alongo S, Visser M, Drouet T et al (2013) Effets de la fragmentation des forêts par l’agriculture itinérante sur la dégradation de quelques propriétés physiques d’un Ferralsol échantillonné à Yangambi, R.D. Congo. Tropicultura 31:36–43

    Google Scholar 

  • André M, Mahy G, Lejeune P, et al (2012) Vers une définition unique des zones périurbaines ? L’apport de l’écologie du paysage pour la segmentation du gradient urbain-rural. In: APERAU (ed) Journées APERAU 2012. Penser et Produire la Ville au XXIème Siècle. Modernisation écologique, qualité urbaine et justice spatiale. Lausanne

    Google Scholar 

  • Armelagos GJ, Goodman AH, Jacobs KH (1991) The origins of agriculture: population growth during a period of declining health. Popul Environ 13:9–22

    Google Scholar 

  • August P, Iverson L, Nugranad J (2002) Human conversion of terrestrial habitats. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • Balaresque P, Bowden GR, Adams SM et al (2010) A predominantly neolithic origin for European paternal lineages. PLoS Biol 8:e1000285

    PubMed Central  PubMed  Google Scholar 

  • Bamba I, Mama A, Neuba DFR et al (2008) Influence des actions anthropiques sur la dynamique spatio-temporelle de l’occupation du sol dans la province du Bas-Congo (R.D. Congo). Sci Nat 5(1):49–60

    Google Scholar 

  • Bamba I, Iyongo Waya Mongo L, Imre A et al (2009) La variabilité du facteur de graduation utilisé dans la méthode d’estimation de la dimension fractale des mosaïques paysagères. Ann ISEA Bengamisa 4:168–176

    Google Scholar 

  • Bamba I, Barima YSS, Bogaert J (2010) Influence de la densité de la population sur la structure spatiale d’un paysage forestier dans le bassin du Congo en R. D. Congo. Trop Conserv Sci 3:31–44

    Google Scholar 

  • Barima YSS, Barbier N, Bamba I et al (2009) Dynamique paysagère en milieu de transition forêt-savane ivoirienne. Bois For Trop 299:15–25

    Google Scholar 

  • Barima YSS, Barbier N, Ouattara B et al (2010a) Relation entre la composition floristique et des indicateurs de la fragmentation du paysage dans une région de transition forêt-savane ivoirienne. Biotechnol Agron Soc Environ 14:617–625

    Google Scholar 

  • Barima YSS, Egnankou MW, N’Doumé CTA et al (2010b) Modélisation de la dynamique du paysage forestier dans la région de transition forêt-savane à l’est de la Côte d’Ivoire. Rev Teledetec 9:129–138

    Google Scholar 

  • Barima YSS, Djibu JP, Alongo S et al (2011) Deforestation in Central and West Africa: landscape dynamics, anthopogenic effects and ecological consequences. In: Daniels JA (ed) Advances in environmental research, volume 7. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Bastin JF, Djibu JP, Havyarimana F et al (2011) Multiscalar analysis of the spatial pattern of forest ecosystems in Central Africa justified by the pattern/process paradigm: two case studies. In: Boehm DA (ed) Forestry: research, ecology and policies. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Bogaert J (2001) Size dependence of interior-to-edge ratios: size predominates shape. Acta Biotheor 49:121–123

    CAS  PubMed  Google Scholar 

  • Bogaert J, André M (2013) Landscape ecology: a unifying discipline. Tropicultura 31:1–2

    Google Scholar 

  • Bogaert J, Impens I (1998) Generating random percolation clusters. Appl Math Comput 91:197–208

    Google Scholar 

  • Bogaert J, Mahamane A (2005) Ecologie du paysage: cibler la configuration et l’échelle spatiale. Ann Sci Agron Benin 7:1–15

    Google Scholar 

  • Bogaert J, Van Hecke P, Impens I (1999a) A reference value for the interior-to-edge ratio of isolated habitats. Acta Biotheor 47:67–77

    Google Scholar 

  • Bogaert J, Van Hecke P, Moermans R et al (1999b) Twist number statistics as an additional measure of habitat perimeter irregularity. Environ Ecol Stat 6:275–290

    Google Scholar 

  • Bogaert J, Moermans R, Van Hecke P (2000a) Fractal dimension of patches based on area and perimeter: evaluation of the non-regression technique. In: Ceulemans R, Bogaert J, Deckmyn G et al (eds) Topics in ecology: structure and function in plants and ecosystems. University of Antwerp (UIA), Wilrijk

    Google Scholar 

  • Bogaert J, Rousseau R, Van Hecke P (2000b) Percolation as a model for informetric distributions: fragment size distribution characterized by Bradford curves. Scientometrics 47:195–206

    Google Scholar 

  • Bogaert J, Rousseau R, Van Hecke P et al (2000c) Alternative area–perimeter ratios for measurement of 2-D shape compactness of habitats. Appl Math Comput 111:71–85

    Google Scholar 

  • Bogaert J, Van Hecke P, Salvador-Van Eysenrode D et al (2000d) Landscape fragmentation assessment using a single measure. Wildl Soc B 28:875–881

    Google Scholar 

  • Bogaert J, Salvador-Van Eysenrode D, Impens I et al (2001a) The interior-to-edge breakpoint distance as a guideline for nature conservation policy. Environ Manag 27:493–500

    CAS  Google Scholar 

  • Bogaert J, Salvador-Van Eysenrode D, Hecke V et al (2001b) Land-cover change: quantification metrics for perforation using 2-D gap features. Acta Biotheor 49:161–169

    Google Scholar 

  • Bogaert J, Salvador-Van Eysenrode D, Van Hecke P et al (2001c) Geometrical considerations for evaluation of reserve design. Web Ecol 2:65–70, Erratum Web Ecol 2:74

    Google Scholar 

  • Bogaert J, Myneni RB, Knyazikhin Y (2002a) A mathematical comment on the formulae for the aggregation index and the shape index. Landsc Ecol 17:87–90

    Google Scholar 

  • Bogaert J, Van Hecke P, Ceulemans R (2002b) The Euler number as an index of spatial integrity of landscapes: evaluation and proposed improvement. Environ Manag 29:673–682

    Google Scholar 

  • Bogaert J, Zhou L, Tucker CJ et al (2002c) Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J Geophys Res 107:14. doi:10.1029/2001JD001075

    Google Scholar 

  • Bogaert J, Hong SK (2004) Landscape ecology: monitoring landscape dynamics using spatial pattern metrics. In: Hong SK, Lee JA, Ihm BS (eds) Ecological issues in a changing world. Status, response and strategy. Kluwer, Dordrecht

    Google Scholar 

  • Bogaert J, Ceulemans R, Salvador-Van Eysenrode D (2004) A decision tree algorithm for detection of spatial processes in landscape transformation. Environ Manag 33:62–73

    Google Scholar 

  • Bogaert J, Farina A, Ceulemans R (2005) Entropy increase of fragmented habitats signals human impact. Ecol Indic 5:207–212

    Google Scholar 

  • Bogaert J, Bamba I, Koffi KJ et al (2008) Fragmentation of forest landscapes in Central Africa: causes, consequences and management. In: Lafortezza R, Chen J, Sanesi G et al (eds) Pattern and processes in forest landscapes. Multiple use and sustainable management. Springer, New York

    Google Scholar 

  • Bogaert J, Barima YSS, Iyongo Waya Mongo L et al (2011a) Forest fragmentation: causes, ecological impacts and implications for landscape management. In: Li C, Lafortezza R, Chen J (eds) Landscape ecology in forest management and conservation. Higher Education Press, Springer, Beijing

    Google Scholar 

  • Bogaert J, Barima YSS, Ji J et al (2011b) A methodological framework to quantify anthropogenic effects on landscape patterns. In: Hong SK (ed) Landscape ecology in Asian cultures. Springer, New York

    Google Scholar 

  • Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301

    Google Scholar 

  • Braidwood RJ (1979) The agricultural revolution. In: Lamberg-Karlovsky CC (ed) Hunters, farmers, and civilizations: old world archaeology. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Bridgewater PB, Arico S (2002) Conserving and managing biodiversity sustainability: the roles of science and society. Nat Resour Forum 26:245–248

    Google Scholar 

  • Burel F, Baudry J (2003) Ecologie du paysage. Concepts, méthodes et applications. Editions Tec&Doc, Paris

    Google Scholar 

  • Childe VG (1950) The urban revolution. Town Plann Rev 21:3–17

    Google Scholar 

  • Cleveland CJ (1995) Resource degradation, technical change, and the productivity of energy use in U.S. agriculture. Ecol Econ 13:185–201

    Google Scholar 

  • Colson F, Bogaert J, Carneiro Filho A et al (2009) The influence of forest definition on landscape fragmentation assessment in Rondônia, Brazil. Ecol Indic 9:1163–1168

    Google Scholar 

  • Colson F, Bogaert J, Ceulemans R (2011) Fragmentation in the Legal Amazon, Brazil: can landscape metrics indicate agricultural policy differences? Ecol Indic 11:1467–1471

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Coulson RN, Saarenmaa H, Daugherty WC et al (1999) A knowledge system environment for ecosystem management. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis. Issues and applications. Springer, Berlin

    Google Scholar 

  • Cox GW, Atkins MD (1979) Agricultural ecology. An analysis of world food production systems. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Dale VH, Fortes DT, Ashwood TL (2002) A landscape-transition matrix approach for land management. In: Lui J, Taylor WW (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge

    Google Scholar 

  • Davis K (1955) The origin and growth of urbanization in the world. Am J Sociol 60:429–437

    Google Scholar 

  • Deblauwe V, Barbier N, Couteron P et al (2008) The global biogeography of semi-arid periodic vegetation patterns. Glob Ecol Biogeogr 17:715–723

    Google Scholar 

  • Deblauwe V, Couteron P, Lejeune O et al (2011) Environmental modulation of self-organized periodic vegetation patterns in Sudan. Ecography 34:990–1001

    Google Scholar 

  • Deblauwe V, Couteron P, Bogaert J et al (2012) Determinants and dynamics of banded vegetation pattern migration in arid climates. Ecol Monogr 82:3–21

    Google Scholar 

  • Demangeon A (1933) Villages et communautés rurales. Ann Geogr 42:337–349

    Google Scholar 

  • Diallo H, Bamba I, Barima YSS et al (2011) Effets combinés du climat et des pressions anthropiques sur la dynamique évolutive de la végétation d’une zone protégée du Mali (Réserve de Fina, Boucle du Baoulé). Sécheresse 22:97–107

    Google Scholar 

  • Diouf A, Barbier N, Mahamane A et al (2010) Caractérisation de la structure spatiale des individus ligneux dans une « brousse tachetée » au sud-ouest du Niger. Rev Can Rech For 40:827–835

    Google Scholar 

  • Diouf A, Barbier N, Lykke AM et al (2012) Relationships between fire history, edaphic factors and woody vegetation structure and composition in a semi-arid savanna landscape (Niger, West Africa). Appl Veg Sci 15:488–500

    Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ. doi:10.1890/070062

    Google Scholar 

  • Evanson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    Google Scholar 

  • Fahrig L (2005) When is a landscape perspective important? In: Wiens JA, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Fahrig L, Baudry J, Brotons L et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    PubMed  Google Scholar 

  • Farina A (2000a) Principles and methods in landscape ecology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Farina A (2000b) Landscape ecology in action. Kluwer Academic, Dordrecht

    Google Scholar 

  • Farina A, Bogaert J, Schipani I (2005) Cognitive landscape and information: new perspectives to investigate the ecological complexity. Biosystems 79:235–240

    PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Google Scholar 

  • Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT (2008) Urban regions. Ecology and the planning beyond the city. Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Gliessman SR (2006) Agroecology. The ecology of sustainable food systems. CRC Press, Boca Raton

    Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science 319:756–760

    CAS  PubMed  Google Scholar 

  • Groom MJ, Gray EM, Townsend PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22:602–609

    PubMed  Google Scholar 

  • Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci 87:54–59

    Google Scholar 

  • Havyarimana F, Bogaert J, Ndayishimiye J et al (2013) Impact de la structure spatiale de Strombosia scheffleri Engl. et Xymalos monospora (Harv.) Baill. sur la régénération naturelle et la coexistence des espèces arborescentes dans la réserve naturelle forestière de Bururi, Burundi. Bois For Trop 316:49–61

    Google Scholar 

  • Hobbs RJ, Hopkins JM (1990) From frontier to fragments: European impact on Australia’s vegetation. Proc Ecol Soc Aust 16:93–114

    Google Scholar 

  • Hufkens K, Bogaert J, Dong QH et al (2008) Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. J Arid Environ 72(2008):1490–1505

    Google Scholar 

  • Imre AR, Bogaert J (2004) The fractal dimension as a measure of the quality of habitats. Acta Biotheor 52:41–56

    CAS  PubMed  Google Scholar 

  • Imre AR, Bogaert J (2006) The Minkowski-Bouligand dimension and the interior-to-edge ratio of habitats. Fractals 14:49–53

    Google Scholar 

  • Iyongo Waya Mongo L, Visser M, De Cannière C et al (2012) Anthropisation et effets de lisière: impacts sur la diversité des rongeurs dans la Réserve Forestière de Masako (Kisangani, R.D. Congo). Trop Conserv Sci 5:270–283

    Google Scholar 

  • Iyongo Waya Mongo L, De Cannière C, Ulyel J et al (2013) Effets de lisière et sex-ratio de rongeurs forestiers dans un écosystème fragmenté en République Démocratique du Congo (Réserve de Masako, Kisangani). Tropicultura 31:3–9

    Google Scholar 

  • Jaeger J (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130

    Google Scholar 

  • Koffi KJ, Deblauwe V, Sibomana S et al (2007) Spatial pattern analysis as a focus of landscape ecology to support evaluation of human impact on landscapes and diversity. In: Hong SK, Nakagoshi N, Fu B et al (eds) Landscape ecological applications in man-influenced areas. Linking man and nature systems. Springer, Dordrecht

    Google Scholar 

  • Kohl P, Wright RP (1977) Stateless cities: the differentiation of societies in the near eastern Neolithic. Dialect Anthropol 2:271–283

    Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G et al (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324

    Google Scholar 

  • Kumba S, Nshimba H, Ndjele L et al (2013) Structure spatiale des trois espèces les plus abondantes dans la Réserve Forestière de la Yoko, Ubundu, République Démocratique du Congo. Tropicultura 31:53–61

    Google Scholar 

  • Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269

    Google Scholar 

  • Lepers E, Lambin EF, Janetos AC et al (2005) A synthesis of information on rapid land-cover change for the period 1981–2000. Bioscience 55:115–124

    Google Scholar 

  • Li ZQ, Bogaert J, Nijs I (2005) Gap pattern and colonization opportunities in plant communities:effects of species richness, mortality, and spatial aggregation. Ecography 28:777–790

    Google Scholar 

  • MacDonald GM (2003) Biogeography: space, time, and life. Wiley, New York

    Google Scholar 

  • Mama A, Sinsin B, De Cannière C et al (2013) Anthropisation et dynamique des paysages en zone soudanienne au nord du Bénin. Tropicultura 31:78–88

    Google Scholar 

  • McIntyre S, Hobbs RJ (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Google Scholar 

  • Montgomery MR (2008) The urban transformation of the developing world. Science 319:761–764

    CAS  PubMed  Google Scholar 

  • Nassauer JI (1995) Culture and changing landscape structure. Landsc Ecol 10:229–237

    Google Scholar 

  • Noon BR, Dale V (2002) Broad-scale ecological science and its application. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • O’Neill RV, Krummel JR, Gardner RH et al (1988) Indices of landscape pattern. Landsc Ecol 3:153–162

    Google Scholar 

  • Patton DR (1975) A diversity index for quantifying habitat “edge”. Wildl Soc B 3:171–173

    Google Scholar 

  • Pimentel D (2003) Ethanol fuels: energy balance, economics, and environmental impacts are negative. Nat Resour Res 12:127–134

    Google Scholar 

  • Pimentel D (2009) Energy inputs in food crop production in developing and developed nations. Energies 2:1–24

    Google Scholar 

  • Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76

    CAS  Google Scholar 

  • Pimentel D, Pimentel M (2008) Food, energy, and society. CRC Press, Boca Raton

    Google Scholar 

  • Pimentel D, Wilson C, McCullum C et al (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Google Scholar 

  • Pimentel D, Williamson S, Alexander CE et al (2008) Reducing energy inputs in the US food system. Hum Ecol 36:459–471

    Google Scholar 

  • Pimentel D, Marklein A, Toth MA et al (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37:1–12

    Google Scholar 

  • Pinhasi R, Fort J, Ammerman AJ (2005) Tracing the origin and spread of agriculture in Europe. PLoS Biol 3:2220–2228

    CAS  Google Scholar 

  • Rakotondrasoa OL, Malaisse F, Rajoelison GL et al (2013) Identification des indicateurs de dégradation de la forêt de tapia (Uapaca bojeri) par une analyse sylvicole. Tropicultura 31:10–19

    Google Scholar 

  • Ramade F (2005) Eléments d’écologie appliquée. Dunod, Paris

    Google Scholar 

  • Reino L, Beja P, Osborne PE et al (2009) Distance to edges, edge contrast and landscape fragmentation: Interactions affecting farmland birds around forest plantations. Biol Conserv 142:824–838

    Google Scholar 

  • Salvador-Van Eysenrode D, Bogaert J, Van Hecke P et al (1998) Influence of tree-fall orientation on canopy gap shape in an Ecuadorian rain forest. J Trop Ecol 14:865–869

    Google Scholar 

  • Salvador-Van Eysenrode D, Kockelbergh F, Bogaert J et al (2002) Canopy gap edge determination and the importance of gap edges for plant diversity. Web Ecol 3:1–5

    Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109:16083–16088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheaffer CC, Moncada KM (2009) Introduction to agronomy: food, crops and, environment. Delmar Cengage Learning, Clifton Park

    Google Scholar 

  • Smith B (1989) Origins of agriculture in eastern North America. Science 246:1586–1571

    Google Scholar 

  • Smith ME (2009) V. Gordon Childe and the urban revolution: a historical perspective on a revolution in urban studies. Town Plann Rev 80:3–29

    Google Scholar 

  • Soja EW (2003) Putting cities first: remapping the origins of urbanism. In: Bridge G, Watson S (eds) A companion to the city. Blackwell, Oxford

    Google Scholar 

  • Stepp JR, Castaneda H, Cervone S (2005) Mountains and biocultural diversity. Mt Res Dev 25:223–227

    Google Scholar 

  • Takada T, Miyamoto A, Hasegawa SF (2010) Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landsc Ecol 25:561–572

    Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–212

    CAS  Google Scholar 

  • Toyi MS, Barima YSS, Mama A et al (2013a) Tree plantation will not compensate natural woody vegetation cover loss in the Atlantic Department of Southern Benin. Tropicultura 31:62–70

    Google Scholar 

  • Toyi MS, Bastin JF, André M et al (2013b) Effets de lisière sur la productivité du teck (Tectona grandis L.f.): étude de cas des teckeraies privées du Sud-Bénin. Tropicultura 31:71–77

    Google Scholar 

  • Tratalos J, Fuller RA, Warren PH et al (2007) Urban form, biodiversity potential and ecosystem services. Landsc Urban Plan 83:308–317

    Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Pattern and process. Springer, New York

    Google Scholar 

  • Urban DL, Wallin DO (2002) Introduction to Markov models. In: Gergel SE, Turner MG (eds) Learning landscape ecology. A practical guide to concepts and techniques. Springer, New York

    Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH Jr (1987) Landscape ecology. A hierarchical perspective can help scientists understand spatial patterns. Bioscience 37:119–127

    Google Scholar 

  • Van Peer L, Nijs I, Bogaert J et al (2001) Survival, gap formation, and recovery dynamics in grassland ecosystems exposed to heat extremes: the role of species richness. Ecosystems 4:797–806

    Google Scholar 

  • Van Zanden JL (1991) The first green revolution: the growth of production and productivity in European agriculture, 1870–1914. Econ Hist Rev 44:215–239

    Google Scholar 

  • Vranken I, Djibu Kabulu JP, Munyemba Kankumbi F et al (2011) Ecological impact of habitat loss on African landscapes and diversity. In: Daniels JA (ed) Advances in environmental research, volume 14. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Vranken I, Amisi YM, Munyemba FK et al (2013) The spatial footprint of the non-ferrous mining industry in Lubumbashi. Tropicultura 31:20–27

    Google Scholar 

  • Watling JI, Orrock JL (2010) Measuring edge contrast using biotic criteria helps define edge effects on the density of an invasive plant. Landsc Ecol 25:69–78

    Google Scholar 

  • Wiens JA (2009) Introduction: framing the issues. In: Collinge SK (ed) Ecology of fragmented landscapes. Johns Hopkins University Press, Baltimore

    Google Scholar 

Download references

Acknowledgements

Isabelle Vranken is a research assistant at the FNRS, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bogaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bogaert, J., Vranken, I., André, M. (2014). Anthropogenic Effects in Landscapes: Historical Context and Spatial Pattern. In: Hong, SK., Bogaert, J., Min, Q. (eds) Biocultural Landscapes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8941-7_8

Download citation

Publish with us

Policies and ethics