Skip to main content

Nanosensors in Systems of Ecological Security

  • Conference paper
  • First Online:
Nanotechnology in the Security Systems

Abstract

In nanoepoch which is characterized by occurrence of completely new fields of a science such as nanology, nanochemistry and nanotechnology the security of a society and a person is not obviously possible without use of nanodimensional systems for monitoring of people health, ecology, information and military technologies. Today it is possible to claim that the security on the basis of nanosensors will be as “safety in everyone’s pocket” in the future. In the present paper the brightest achievements in the field of development and produce of new nanomaterials for their application in quality of nanosized super sensitive and selective nanosensors are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kharlamov A, Kirillova N, Fomenko V (2008) Persistent organic pollutants at nanotechnology and their impact on people health. In: Mehmetli E, Koumanova B (eds) The fate of persistent organic pollutants in the environment. Springer, Dordrecht, pp 425–441

    Chapter  Google Scholar 

  2. Kharlamov AI, Kirillova NV, Skripnichenko AV et al (2010) Nanochemical peculiarities of nanostructures, nanophases and nanoparticles. Rep Acad Sci Ukr 5(4):157–163 (Russian)

    Google Scholar 

  3. Kharlamov A, Skripnichenko A, Gubareny N et al (2011) Toxicology of nano-objects: nanoparticles, nanostructures and nanophases. In: Mikhalovsky S, Khajibaev A (eds) Biodefence. NATO science for peace and security series A, chemistry and biology, part 1. Springer, Dordrecht, pp 23–32

    Google Scholar 

  4. Kharlamova G, Kirillova N (2012) Nanomaterials in environmental contamination. In: Vaseashta A, Braman E, Sussman P (eds) Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism. NATO science for peace and security series A, chemistry and biology, part 2. Springer, Dordrecht, pp 131–140

    Google Scholar 

  5. Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671

    Article  Google Scholar 

  6. Shtykov SN, Rusanov TY (2008) Nanomaterials and nanotechnology in chemical and biochemical sensors: opportunities and the application of Russia. J Mendeleev Russ Chem Soc LII 2:92–100 (Russian)

    Google Scholar 

  7. Tans SJ, Devoret MH, Dai H et al (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–476

    Article  ADS  Google Scholar 

  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  ADS  Google Scholar 

  9. Kong J, Franklin NR, Zhou C (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  ADS  Google Scholar 

  10. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  ADS  Google Scholar 

  11. Varghese OK, Kichambre PD, Gong D et al (2001) Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B 81:32–41

    Article  Google Scholar 

  12. Zahab A, Spina L, Poncharal P, Marliere C (2000) Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube. Phys Rev B 62:10000–10003

    Article  ADS  Google Scholar 

  13. Mirica KA, Azzarelli JM, Weis JG et al (2013) Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc Natl Acad Sci USA 110(33), 13242–13243

    Article  Google Scholar 

  14. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen XQ, Chen XP (2011) Investigation on the electrochemical properties of TiO2 nanotubes prepared by anodic oxidation. In: International conference on materials for renewable energy & environment (ICMREE), Shanghai, pp 1393–1396

    Google Scholar 

  16. Liu H, Ding D, Ning C, Li Z (2012) Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes. Nanotechnology 23:15502–15507

    Article  ADS  Google Scholar 

  17. Varghese OK, Gong DW, Paulose M et al (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  Google Scholar 

  18. Mor GK, Carvalho MA, Varghese OK et al (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  ADS  Google Scholar 

  19. Lee BS, Kim WS, Kim DH, et al (2011) Fabrication of SnO2 nanotube microyarn and its gas sensing behavior. Smart Mater Struct 20:1–7

    Google Scholar 

  20. Lupan O, Chai G, Cho L (2008) Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng 85:2220–2228

    Article  Google Scholar 

  21. Bai S, Guo T, Zhao Y et al (2013) Mechanism enhancing gas sensing and first-principle calculations of Al-doped ZnO nanostructures. J Mater Chem A 1(37):11335–11342

    Article  Google Scholar 

  22. Jin W, Dong B, Chen W et al (2010) Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotube. Sens Actuators B 145:211–215

    Article  Google Scholar 

  23. Huang L, Huang Y, Liang J et al (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical. Sens Nano Res 4(7):675–684

    Article  Google Scholar 

  24. Zhou KF, Zhu YH, Yang XL et al (2010) A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim Acta 55:3055–3060

    Article  Google Scholar 

  25. Kumar V, Anslyn EV (2013) A selective and sensitive chromogenic and fluorogenic detection of a sulfur mustard simulant. Chem Sci 4:4292–4297

    Article  Google Scholar 

  26. Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery. Appl Adv Mater 17:582–586

    Article  Google Scholar 

  27. Chen J, Xu L, Li W et al (2005) Efficient chemical sensor material for H2S α-Fe2O3 nanotubes fabricated using carbon nanotube. Templates Adv Mater 17:2993–2997

    Article  Google Scholar 

  28. Lin ZH, Zhu G, Zhou YS, Yang DY et al (2013) A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Ed 52(19):5065–5069

    Article  Google Scholar 

  29. Wang J, Qu X (2013) Recent progress in nanosensors for sensitive detection of biomolecules. Nanoscale 5:3589–3600

    Article  ADS  Google Scholar 

  30. Yan XB, Chen XJ, Tay BK, Khor KA (2007) Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochem Commun 9:1269–1275

    Article  Google Scholar 

  31. Heller DA, Jin H, Martinez BM et al (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120

    Article  ADS  Google Scholar 

  32. Pallarola D, Schneckenburger M, Spatz JP, Pacholski C (2013) Real-time monitoring of electrochemical controlled protein adsorption by a plasmonic nanowire based sensor. Chem Commun 49:8326–8328

    Article  Google Scholar 

  33. Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotaki NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18:211–215

    Article  Google Scholar 

  34. Gavalas VG, Chaniotakis NA (2000) Fullerene-mediated amperometric biosensors. Anal Chim Acta 409:131–135

    Article  Google Scholar 

  35. Liang G, Li X, Liu X (2013) Electrochemical detection of 9-hydroxyfluorene based on the direct interaction with hairpin DNA. Analyst 138:1032–1037

    Article  ADS  Google Scholar 

  36. Jang K, Park J, Bang D et al (2013) Highly sensitive detection of self-aggregated single-walled carbon nanotubes using a DNA-immobilized resonator. Chem Commun 49(77):8635–8637

    Article  Google Scholar 

  37. Shunin YN, Zhukovskii YF, Gopeyenko VI et al (2012) Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures. J Nanophoton 6(1):061706

    Article  Google Scholar 

  38. Liu H, Gao J, Xue MQ et al (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir Acs J Surf Colloids 25:12006–12010

    Article  Google Scholar 

  39. Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  Google Scholar 

  40. Valentini F, Amine A, Orlanducci S et al (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75:5413–5421

    Article  Google Scholar 

  41. Zhang MG, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–5050

    Article  Google Scholar 

  42. Chaniotakis N (2007) Fullerene-based electrochemical detection methods for biosensing nanotechnologies for the life sciences. In: Kumar C (ed) Nanomaterials for biosensors. Technology and engineering, no 8. Wiley-VCH, Weinheim, pp 408–412

    Google Scholar 

  43. Papakonstantinou P, McMullan M, Stamboulis et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:1–9

    Google Scholar 

  44. Zhang J, Lei J, Pan R et al (2011) In situ assembly of gold nanoparticles on nitrogen-doped carbon nanotubes for sensitive immunosensing of microcystin-LR. Chem Commun 47: 668–670

    Article  Google Scholar 

  45. Wang Y, Shao Y, Matson DW et al (2010) Nitrogen-doped graphene and its application in electrochemical. Biosens ACS Nano 4(4):1790–1798

    Article  Google Scholar 

  46. Castillo JJ, Svendsen WE, Rozlosnik N et al (2013) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138:1026–1031

    Article  ADS  Google Scholar 

  47. Feng L, Wu L, Qu X, et al (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25(2):168–186

    Article  Google Scholar 

  48. Jørgensen AS, Gupta P, Wengel J, Astakhova KI (2013) Clickable LNA/DNA probes for fluorescence sensing of nucleic acids and autoimmune antibodies. Chem Commun 49:10751–10753

    Article  Google Scholar 

  49. Chan KWY, Liu G, Song X et al (2013) MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat Mater 3(8):583–594

    Google Scholar 

  50. Mannoor MS, Tao H, Clayton JD et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3(763):1–8

    Google Scholar 

  51. Yang K, Zhang S, Zhang G (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  ADS  Google Scholar 

  52. Li M, Yang X, Ren J et al (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24(3):1722–1728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kharlamova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kharlamova, G., Kharlamov, O., Bondarenko, M. (2015). Nanosensors in Systems of Ecological Security. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_20

Download citation

Publish with us

Policies and ethics