Skip to main content

How Protein Disorder Controls Non-Photochemical Fluorescence Quenching

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Summary

We discuss the de-excitation of electronically excited states of chlorophyll a, monitored via non-photochemical quenching (NPQ) of chlorophyll fluorescence, with respect to (i) involvement of the main light-harvesting complex of photosystem II (LHCII trimers) and (ii) a change in pigment properties following a change in the conformation of this protein complex. We suggest that LHCII exhibits dynamic behavior arising from a fundamental property of proteins, i.e., their intrinsic disorder. Photosynthetic pigment-protein complexes, such as LHCII, constitute complex environments. The pigments responsible for absorption and subsequent transfer of light energy are subject to multiple interactions in a highly heterogeneous protein environment. This feature gives rise to an intrinsic structural and energetic disorder of the pigment-protein complexes as well as complicated dynamics of excitation-energy transfer within the complexes. In particular, individual complexes show rapid and reversible quenching on timescales of milliseconds to minutes. We propose that plants employ this intrinsic capacity to reversibly switch between unquenched and quenched states to control the de-excitation (i.e., thermal dissipation) of potentially harmful excess excitation energy. Modulation of de-excitation by the local environment of pigment complexes will be demonstrated, with a particular focus on how this modulation manifests itself as chlorophyll fluorescence quenching of individually measured LHCII trimers. It will be shown how the results point to the concept of environmentally controlled disorder as a basis for the energy-dependent component of NPQ, i.e., that the intrinsic capacity of a pigment-protein complex to rapidly switch between light-harvesting and dissipating states can be controlled by the local environment of the complex. This can be explained by assuming that pigment-protein complexes are in an unstable equilibrium between different structural and corresponding emissive states, where subtle perturbations in the physico-chemical environment can shift the equilibrium to favor one or more of these states. As such, regulation of a disordered conformational nanoswitch provides a satisfying explanation for NPQ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chl:

Chlorophyll

CT:

Charge transfer

FL:

Fluorescence

KD :

Degree of thermal energy dissipation of a single complex

KD = IU/IQ − 1:

Where IU and IQ refer to the fluorescence intensity in the unquenched and quenched environments, respectively

L:

Lutein

LH:

Light harvesting

Lhca:

Light-harvesting complex of photosystem I

Lhcb:

Light-harvesting complex of photosystem II

LHCII:

Major light-harvesting complex II of plants

NPQ:

Non-photochemical quenching of chlorophyll a fluorescence

PS I:

Photosystem I

PS II:

Photosystem II

qE:

Energy-dependent component of NPQ

RC:

Reaction center

S1 :

First excited state

SMS:

Single-molecule spectroscopy

ß-DM:

n-dodecyl-β, D-maltoside

V:

Violaxanthin

VAZ:

Violaxanthin-antheraxanthin-zeaxanthin

Z:

Zeaxanthin

References

  • Adams WW III, Demmig-Adams B, Verhoeven AS, Barker DH (1995) ‘Photoinhibition’ during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

    CAS  Google Scholar 

  • Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 49–64

    Google Scholar 

  • Barkai E, Jung YJ, Silbey R (2004) Theory of single-molecule spectroscopy: beyond the ensemble average. Annu Rev Phys Chem 55:457–507

    CAS  PubMed  Google Scholar 

  • Barros T, Royant A, Standfuss J, Dreuw A, Kühlbrandt W (2009) Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state. EMBO J 28:298–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barzda V, Jennings RC, Zucchelli G, Garab G (1999) Kinetic analysis of the light-induced fluorescence quenching in light-harvesting chlorophyll a/b pigment-protein complex of photosystem II. Photochem Photobiol 70:751–759

    CAS  Google Scholar 

  • Beddard GS, Porter G (1976) Concentration quenching in chlorophyll. Nature 260:366–367

    CAS  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boekema EJ, Van Breemen JFL, Van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133

    CAS  PubMed  Google Scholar 

  • Brecht M, Radics V, Nieder JB, Bittl R (2009) Protein dynamics-induced variation of excitation energy transfer pathways. Proc Natl Acad Sci USA 106:11857–11861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–628

    CAS  PubMed  Google Scholar 

  • Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84:7524–7528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: differential analysis of the Lhcbl-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43:9467–9476

    CAS  PubMed  Google Scholar 

  • Castelletti S, Morosinotto T, Robert B, Caffarri S, Bassi R, Croce R (2003) Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. Biochemistry 42:4226–4234

    CAS  PubMed  Google Scholar 

  • Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat Phys 9:113–118

    CAS  Google Scholar 

  • Chmeliov J, Valkunas L, Krüger TPJ, Ilioaia C, van Grondelle R (2013) Fluorescence blinking of single major light-harvesting complexes. New J Phys 15:085007

    Google Scholar 

  • Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–647

    CAS  PubMed  Google Scholar 

  • Croce R, Chojnicka A, Morosinotto T, Ihalainen JA, van Mourik F, Dekker JP, Bassi R, van Grondelle R (2007) The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment-pigment interaction characteristics. Biophys J 93:2418–2428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cseh Z, Vianelli A, Rajagopal S, Krumova S, Kovacs L, Papp E, Barzda V, Jennings R, Garab G (2005) Thermo-optically induced reorganizations in the main light harvesting antenna of plants. I. Non-arrhenius type of temperature dependence and linear light-intensity dependencies. Photosynth Res 86:263–273

    CAS  PubMed  Google Scholar 

  • Dainese P, Bassi R (1991) Subunit stoichiometry of the chloroplast photosystem-II antenna system and aggregation state of the component chlorophyll a/b binding-proteins. J Biol Chem 266:8136–8142

    CAS  PubMed  Google Scholar 

  • Damjanović A, Ritz T, Schulten K (2000) Excitation energy trapping by the reaction center of Rhodobacter sphaeroides. Int J Quantum Chem 77:139–151

    Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Logan BA, Verhoeven AS (1995) Xanthophyll cycle-dependent energy-dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Aust J Plant Physiol 22:249–260

    CAS  Google Scholar 

  • Demmig-Adams B, Moeller DL, Logan BA, Adams WW III (1998) Positive correlation between levels of retained zeaxanthin plus antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola (Hayata) Merrill. Planta 205:367–374

    CAS  Google Scholar 

  • Elber R, Karplus M (1987) Multiple conformational states of proteins – a molecular-dynamics analysis of myoglobin. Science 235:318–321

    CAS  PubMed  Google Scholar 

  • Engel GS, Calhoun TR, Read EL, Ahn TK, Mančal T, Cheng YC, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    CAS  PubMed  Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Academic, New York, pp 93–137

    Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    CAS  PubMed  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray-diffraction as a probe of protein structural dynamics. Nature 280:558–563

    CAS  PubMed  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    CAS  PubMed  Google Scholar 

  • Gilmore AM, Ball MC (2000) Protection and storage of chlorophyll in overwintering evergreens. Proc Natl Acad Sci USA 97:11098–11101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilmore AM, Matsubara S, Ball MC, Barker DH, Itoh S (2003) Excitation energy flow at 77 K in the photosynthetic apparatus of overwintering evergreens. Plant Cell Environ 26:1021–1034

    Google Scholar 

  • Green BR, Pichersky E, Kloppstech K (1991) Chlorophyll-a/b-binding proteins – an extended family. Trends Biochem Sci 16:181–186

    CAS  PubMed  Google Scholar 

  • Gulbinas V, Karpicz R, Garab G, Valkunas L (2006) Nonequilibrium heating in LHCII complexes monitored by ultrafast absorbance transients. Biochemistry 45:9559–9565

    CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    CAS  Google Scholar 

  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil Trans R Soc B 367:3455–3465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll protein complex. FEBS Lett 292:1–4

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Phil Trans R Soc B 355:1361–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    CAS  PubMed  Google Scholar 

  • Ihalainen JA, Rätsep M, Jensen PE, Scheller HV, Croce R, Bassi R, Korppi-Tommola JEI, Freiberg A (2003) Red spectral forms of chlorophylls in green plant PSI – a site-selective and high-pressure spectroscopy study. J Phys Chem B 107:9086–9093

    CAS  Google Scholar 

  • Ilioaia C, Johnson MP, Horton P, Ruban AV (2008) Induction of efficient energy dissipation in the isolated light-harvesting complex of photosystem II in the absence of protein aggregation. J Biol Chem 283:29505–29512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ilioaia C, Johnson MP, Liao P-N, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B (2011) Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J Biol Chem 286:27247–27254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishizaki A, Calhoun TR, Schlau-Cohen GS, Fleming GR (2010) Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys Chem Chem Phys 12:7319–7337

    CAS  PubMed  Google Scholar 

  • Jang S, Newton MD, Silbey RJ (2004) Multichromophoric Förster resonance energy transfer. Phys Rev Lett 92:218301–218304

    PubMed  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    PubMed  Google Scholar 

  • Jennings RC, Garlaschi FM, Zucchelli G (1991) Light-induced fluorescence quenching in the light-harvesting chlorophyll a/b protein complex. Photosynth Res 27:57–64

    CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 284:23592–23601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Novoderezhkin VI, Ilioaia C, van Grondelle R (2010) Fluorescence spectral dynamics of single LHCII trimers. Biophys J 98:3093–3101

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, Valkunas L, van Grondelle R (2011a) Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J Phys Chem B 115:5083–5095

    PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, van Grondelle R (2011b) Fluorescence intermittency from the main plant light-harvesting complex: resolving shifts between intensity levels. J Phys Chem B 115:5071–5082

    PubMed  Google Scholar 

  • Krüger TPJ, Wientjes E, Croce R, van Grondelle R (2011c) Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci USA 108:13516–13521

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E, Horton P, van Grondelle R (2012) Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys J 102:2669–2676

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, Johnson MP, Belgio E, Horton P, Ruban AV, van Grondelle R (2013) The specificity of controlled protein disorder in the photoprotection of plants. Biophys J 105:1018–1026

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, van Grondelle R (2014) Disentangling the low energy states of the major light-harvesting complex of plants and their role in photoprotection. Biochim Biophys Acta 1837:1027–1038

    PubMed  Google Scholar 

  • Kulzer F, Orrit M (2004) Single-molecule optics. Annu Rev Phys Chem 55:585–611

    CAS  PubMed  Google Scholar 

  • Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR (2010) Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves. Plant Physiol 152:1611–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao P-N, Holleboom CP, Wilk L, Kuhlbrandt W, Walla PJ (2010) Correlation of Car S1 -> Chl with Chl -> Car S1 energy transfer supports the excitonic model in quenched light harvesting complex II. J Phys Chem B 114:15650–15655

    CAS  PubMed  Google Scholar 

  • Liao P-N, Pillai S, Kloz M, Gust D, Moore AL, Moore TA, Kennis JTM, van Grondelle R, Walla PJ (2012) On the role of excitonic interactions in carotenoid-phthalocyanine dyads and implications for photosynthetic regulation. Photosynth Res 111:237–243

    CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 a resolution. Nature 428:287–292

    CAS  PubMed  Google Scholar 

  • Liu L-N, Elmalk AT, Aartsma TJ, Thomas J-C, Lamers GEM, Zhou B-C, Zhang Y-Z (2008) Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PLoS One 3:e3134

    PubMed Central  PubMed  Google Scholar 

  • Loos D, Cotlet M, De Schryver F, Habuchi S, Hofkens J (2004) Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. Biophys J 87:2598–2608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma B, Kumar S, Tsai CJ, Nussinov R (1999) Folding funnels and binding mechanisms. Protein Eng 12:713–720

    CAS  PubMed  Google Scholar 

  • Meier T, Chernyak V, Mukamel S (1997) Femtosecond photon echoes in molecular aggregates. J Chem Phys 107:8759–8780

    CAS  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    CAS  PubMed  Google Scholar 

  • Moerner WE (2002) A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J Phys Chem B 106:910–927

    CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    CAS  PubMed  Google Scholar 

  • Morosinotto T, Breton J, Bassi R, Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278:49223–49229

    CAS  PubMed  Google Scholar 

  • Morton J, Hall J, Smith P, Fusamichi A, Faisal K, Shen JR, Krausz E (2014) Determination of the PS I content of PS II core preparations using selective emission: a new emission of PS II at 780 nm. Biochim Biophys Acta 1837:167–177

    CAS  PubMed  Google Scholar 

  • Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC-II chlorophyll-protein complex – a time-resolved fluorescence study. Biochim Biophys Acta 1141:23–28

    CAS  Google Scholar 

  • Nieder JB, Brecht M, Bittl R (2009) Dynamic intracomplex heterogeneity of phytochrome. J Am Chem Soc 131:69–71

    CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Razjivin AP (1994) Exciton states of the antenna and energy trapping by the reaction center. Photosynth Res 42:9–15

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Razjivin AP (1996) The theory of Förster-type migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria. Chem Phys 211:203–214

    CAS  Google Scholar 

  • Novoderezhkin VI, van Grondelle R (2010) Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys Chem Chem Phys 12:7352–7365

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J Phys Chem B 109:10493–10504

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Rutkauskas D, van Grondelle R (2006) Dynamics of the emission spectrum of a single LH2 complex: interplay of slow and fast nuclear motions. Biophys J 90:2890–2902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novoderezhkin VI, Dekker JP, van Grondelle R (2007) Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys J 93:1293–1311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novoderezhkin VI, Marin A, van Grondelle R (2011) Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. Phys Chem Chem Phys 13:17093–17103

    CAS  PubMed  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    PubMed  Google Scholar 

  • Owens TG (1994) Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 95–107

    Google Scholar 

  • Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E, Wen J, Blankenship RE, Engel GS (2010) Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA 107:12766–12770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pascal AA, Liu ZF, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    CAS  PubMed  Google Scholar 

  • Read EL, Engel GS, Calhoun TR, Mančal T, Ahn TK, Blankenship RE, Fleming GR (2007) Cross-peak-specific two-dimensional electronic spectroscopy. Proc Natl Acad Sci USA 104:14203–14208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redfield AG (1957) On the theory of relaxation processes. IBM J Res Develop 1:19–31

    Google Scholar 

  • Redfield AG (1965) The theory of relaxation processes. Adv Magn Res 1:1–32

    Google Scholar 

  • Renger T (2004) Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature dependent optical band shift. Phys Rev Lett 93:188101

    PubMed  Google Scholar 

  • Romero E, Mozzo M, van Stokkum IHM, Dekker JP, van Grondelle R, Croce R (2009) The origin of the low-energy form of photosystem I light-harvesting complex lhca4: mixing of the lowest exciton with a charge-transfer state. Biophys J 96:L35–L37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of [Delta]pH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta 1102:30–38

    CAS  Google Scholar 

  • Ruban AV, Rees D, Noctor GD, Young A, Horton P (1991) Long-wavelength chlorophyll species are associated with amplification of high-energy-state excitation quenching in higher-plants. Biochim Biophys Acta 1059:355–360

    Google Scholar 

  • Ruban AV, Young A, Horton P (1994) Modulation of chlorophyll fluorescence quenching in isolated light-harvesting complex of photosystem II. Biochim Biophys Acta 1186:123–127

    CAS  Google Scholar 

  • Ruban AV, Dekker JP, Horton P, van Grondelle R (1995) Temperature-dependence of chlorophyll fluorescence from the light-harvesting complex II of higher-plants. Photochem Photobiol 61:216–221

    CAS  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1996) Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 35:674–678

    CAS  PubMed  Google Scholar 

  • Ruban A, Calkoen F, Kwa SLS, Van Grondelle R, Horton P, Dekker JP (1997) Characterisation of the aggregated state of the light harvesting complex of photosystem II by linear and circular dichroism. Biochim Biophys Acta 1321:61–70

    CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    CAS  PubMed  Google Scholar 

  • Rutkauskas D, Novoderezkhin V, Cogdell RJ, van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43:4431–4438

    CAS  PubMed  Google Scholar 

  • Rutkauskas D, Cogdell RJ, van Grondelle R (2006) Conformational relaxation of single bacterial light-harvesting complexes. Biochemistry 45:1082–1086

    CAS  PubMed  Google Scholar 

  • Santabarbara S, Horton P, Ruban AV (2009) Comparison of the thermodynamic landscapes of unfolding and formation of the energy dissipative state in the isolated light harvesting complex II. Biophys J 97:1188–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlau-Cohen GS, Calhoun TR, Ginsberg NS, Read EL, Ballottari M, Bassi R, van Grondelle R, Fleming GR (2009) Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J Phys Chem B 113:15352–15363

    CAS  PubMed  Google Scholar 

  • Schmid VHR, Cammarata KV, Bruns BU, Schmidt GW (1997) In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94:7667–7672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholes GD, Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104:1854–1868

    CAS  Google Scholar 

  • Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nature Chem 3:763–774

    CAS  Google Scholar 

  • Siffel P, Vacha F (1998) Aggregation of the light-harvesting complex in intact leaves of tobacco plants stressed by CO2 deficit. Photochem Photobiol 67:304–311

    CAS  Google Scholar 

  • Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103:252–260

    CAS  Google Scholar 

  • Tang YL, Wen XG, Lu QT, Yang ZP, Cheng ZK, Lu CM (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tietz C, Jelezko F, Gerken U, Schuler S, Schubert A, Rogl H, Wrachtrup J (2001) Single molecule spectroscopy on the light-harvesting complex II of higher plants. Biophys J 81:556–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai CJ, Kumar S, Ma BY, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8:1181–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaitekonis S, Trinkunas G, Valkunas L (2005) Red chlorophylls in the exciton model of photosystem I. Photosynth Res 86:185–201

    CAS  PubMed  Google Scholar 

  • Valkunas L, Chmeliov J, Krüger TPJ, Ilioaia C, van Grondelle R (2012) How photosynthetic proteins switch. J Phys Chem Lett 3:2779–2784

    CAS  Google Scholar 

  • Valkunas L, Abramavicius D, Mančal T (2013) Molecular excitation dynamics and relaxation: quantum theory and spectroscopy. Wiley-VCH, Berlin

    Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic Excitons. World Scientific Publishing, Singapore

    Google Scholar 

  • van Grondelle R, Novoderezhkin VI (2006a) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8:793–807

    PubMed  Google Scholar 

  • van Grondelle R, Novoderezhkin VI (2006b) Spectroscopy and dynamics of excitation transfer and trapping in purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Volume 28. Springer, Dordrecht, pp 213–252

    Google Scholar 

  • van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glättli A, Hünenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NF, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092

    Google Scholar 

  • van Oijen AM, Ketelaars M, Kohler J, Aartsma TJ, Schmidt J (1999) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285:400–402

    PubMed  Google Scholar 

  • van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J Phys Chem B 111:7631–7637

    PubMed  Google Scholar 

  • Vasilev S, Irrgang KD, Schrotter T, Bergmann A, Eichler HJ, Renger G (1997) Quenching of chlorophyll alpha fluorescence in the aggregates of LHCII: steady state fluorescence and picosecond relaxation kinetics. Biochemistry 36:7503–7512

    CAS  Google Scholar 

  • Wahadoszamen M, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766

    CAS  PubMed  Google Scholar 

  • Wentworth M, Ruban AV, Horton P (2000) Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin. FEBS Lett 471:71–74

    CAS  PubMed  Google Scholar 

  • Wentworth M, Ruban AV, Horton P (2003) Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light-harvesting complexes. J Biol Chem 278:21845–21850

    CAS  PubMed  Google Scholar 

  • Wientjes E, Roest G, Croce R (2012) From red to blue to far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? Biochim Biophys Acta Bioenerg 1817:711–717

    CAS  Google Scholar 

  • Yan H, Zhang P, Wang C, Liu Z, Chang W (2007) Two lutein molecules in LHCII have different conformations and functions: insights into the molecular mechanism of thermal dissipation in plants. Biochem Biophys Res Commun 355:457–463

    CAS  PubMed  Google Scholar 

  • Yang M, Damjanović A, Vaswani HM, Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85:140–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zer H, Vink M, Keren N, Dilly-Hartwig HG, Paulsen H, Herrmann RG, Andersson B, Ohad I (1999) Regulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II. Proc Natl Acad Sci USA 96:8277–8282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108:7763–7774

    CAS  Google Scholar 

  • Zondervan R, Kulzer F, Orlinskii SB, Orrit M (2003) Photoblinking of Rhodamine 6G in poly(vinyl alcohol): radical dark state formed through the triplet. J Phys Chem A 107:6770–6776

    CAS  Google Scholar 

  • Zubik M, Luchowski R, Puzio M, Janik E, Bednarska J, Grudzinski W, Gruszecki WI (2013) The negative feedback molecular mechanism which regulates excitation level in the plant photosynthetic complex LHCII: towards identification of the energy dissipative state. Biochim Biophys Acta 1827:355–364

    CAS  PubMed  Google Scholar 

  • Zucchelli G, Brogioli D, Casazza AP, Garlaschi FM, Jennings RC (2007) Chlorophyll ring deformation modulates Q(y) electronic energy in chlorophyll-protein complexes and generates spectral forms. Biophys J 93:2240–2254

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU FP6 Marie Curie Early Stage Training Network via the Advanced Training in Laser Sciences project (T.P.J.K.); EU FP7 Marie Curie Reintegration Grant (ERG 224796) (C.I.); CEA-Eurotalents program (European contract PCOFUND-GA-2008-228664) (C.I.); Project Sunshine, University of Sheffield (P.H.); TOP grant (700.58.305) from the Foundation of Chemical Sciences, part of the Netherlands Organization for Scientific Research (C.I. and R.v.G.); Netherlands Organization for Scientific Research program in Fundamental Research of Matter (The Thylakoid Membrane: A Dynamic Switch; FP126; 12.0344) (M.T.A.A. and R.v.G); Advanced Investigator Grant (267333, PHOTPROT) from the European Research Council (ERC) (C.I., T.P.J.K., and R.v.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjaart P. J. Krüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krüger, T.P.J., Ilioaia, C., Horton, P., Alexandre, M.T.A., van Grondelle, R. (2014). How Protein Disorder Controls Non-Photochemical Fluorescence Quenching. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_6

Download citation

Publish with us

Policies and ethics