Skip to main content

Abstract

Understanding the relative contributions of biotic and abiotic factors to community structure remains a fundamental aim of community ecology. Dytiscid beetles, which occur in a diverse set of aquatic habitats and display considerable variation in their abundance and composition among locales, would appear to be a model system for investigating such questions. Here, we present an overview of investigations into community structure in dytiscids, which reveals that they are understudied relative to their typically high abundance in ditches to bogs to lakes. We discuss emergent trends in the co-occurrence of dytiscids with regard to ecological and phylogenetic similarity, briefly present some investigations into the influence of dispersal on community structure, and discuss some prospects for future progress in this area.

What governs the nature of natural communities? This question has generated much interest among biologists. The major conclusion to come out of the considerable research conducted on the questions seems to be that there is no simple answer.

Larson 1990

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:50–61

    Google Scholar 

  • Aiken RB (1991) Characterization and phenology of a predaceous diving beetle community in a central Alberta lake. Can Entomol 123:305–313

    Google Scholar 

  • Alarie Y, Maire A (1991) Dytiscid fauna (Coleoptera: Dytiscidae) of the Quebéc Subarctic. Coleopts Bull 45:350–357

    Google Scholar 

  • Alonso D, Mc Kane AJ (2004) Sampling Hubbell’s neutral theory of biodiversity. Ecol Lett 7:901–910

    Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Google Scholar 

  • Arnott SE, Jackson AB, Alarie Y (2006) Distribution and potential effects of water beetles in lakes recovering from acidification. J N Am Benthol Soc 25:811–824

    Google Scholar 

  • Askew RR (2004) The dragonflies of Europe. Harley Books, Colchester

    Google Scholar 

  • Báldi A (2008) Habitat heterogeneity overrides the species–area relationship. J Biogeogr 35:675–681

    Google Scholar 

  • Balke M, Larson DJ, Hendrich L (1997) A review of the New Guinea species of Laccophilus Leach 1815 with notes on regional melanism (Coleoptera: Dytiscidae). Trop Zool 10:295–320

    Google Scholar 

  • Baselga A, Fujisawa T, Crampton-Platt A, Bergsten J, Foster PG, Monaghan MT, Vogler AP (2013) Whole-community DNA barcoding reveals a spatio-temporal continuum of biodiversity at species and genetic levels. Nat Commun 4:1892

    PubMed  Google Scholar 

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100

    CAS  PubMed  Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418

    CAS  PubMed  Google Scholar 

  • Bosi G (2001) Abundance, diversity and seasonal succession of dytiscid and noterid beetles (Coleoptera: Adephaga) in two marshes of the Eastern Po Plain (Italy). Hydrobiologica 459:1–7

    Google Scholar 

  • Brodie ED (1992) Correlational selection for color pattern and anti predator behavior in the garter snake Thamnophis ordinoides. Evolution 46:1284–1298

    Google Scholar 

  • Brodin T, Johansson F, Bergsten J (2006) Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history. Freshw Biol 51:1277–1285

    Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Google Scholar 

  • Cannings RA (2002) Introducing the dragonflies of British Columbia and the Yukon. Royal British Columbia Museum, Victoria

    Google Scholar 

  • Cavender-Bares J, Ackerley DA, Baum D, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163:823–843

    CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87:S109–S122

    PubMed  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    PubMed  Google Scholar 

  • Chase JM (1999) Food web effects of prey size refugia variable interactions and alternative stable equilibria. Am Nat 154:559–570

    PubMed  Google Scholar 

  • Chase JM (2005) Towards a really unified theory for metacommunities. Funct Ecol 19:182–186

    Google Scholar 

  • Clark CW, Harvell CD (1992) Inducible defenses and the allocation of resources: a minimal model. Am Nat 139:521–539

    Google Scholar 

  • Davidowitz G, Roff DA, Nijhout HF (2005) A physiological perspective on the response of body size and development time to simultaneous directional selection. Intergr Comp Biol 45:525–531

    Google Scholar 

  • Dionne M, Folt CL (1991) An experimental analysis of macrophyte growth forms as fish foraging habitat. Can J Fish Aquat Sci 48:123–131

    Google Scholar 

  • Eklöv P, Werner EE (2000) Multiple predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88:250–258

    Google Scholar 

  • Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91

    Google Scholar 

  • Endler JA (1984) Progressive background matching in moths, and a quantitative measure of crypsis. Biol J Linn Soc 22:187–231

    Google Scholar 

  • Endler JA (1995) Multiple trait coevolution and environmental gradients in guppies. Trends Ecol Evol 10:22–29

    CAS  PubMed  Google Scholar 

  • Eyre MD, Ball SG, Foster GN (1986) An initial classification of the habitats of aquatic Coleoptera in north-east England. J Appl Ecol 23:841–852

    Google Scholar 

  • Eyre MD, Carr R, McBlane RP, Foster GN (1992) The effects of varying site-water duration on the distribution of water beetle assemblages, adults and larvae (Coleoptera: Haliplidae, Dytiscidae, Hydrophilidae). Arch Hydrobiol 124:281–291

    Google Scholar 

  • Eyre MD, Foster GN, Young AG (1993) Relationships between water-beetle distributions and climatic variables – a possible index for global climatic change. Arch Hydrobiol 127:437–450

    Google Scholar 

  • Eyre MD, Foster GN, Luff ML, Staley JR (2003) An investigation into the relationship between water beetle (Coleoptera) distribution and land cover in Scotland and northeast England. J Biogeogr 30:1835–1849

    Google Scholar 

  • Eyre MD, Foster GN, Luff ML, Rushton SP (2006) The definition of British water beetle species pools (Coleoptera) and their relationship to altitude, temperature, precipitation and land cover variables. Hydrobiologia 560:121–131

    Google Scholar 

  • Fairchild GW, Faulds AM, Matta JF (2000) Beetle assemblages in ponds: effects of habitat and site age. Freshw Biol 44:523–534

    Google Scholar 

  • Foster GN, Foster AP, Eyre MD, Bilton DT (1990) Classification of water beetle assemblages in arable fenland and ranking of sites in relation to conservation value. Freshw Biol 22:343–354

    Google Scholar 

  • Gerritsen J, Strickler JR (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. Can J Zool 34:73–82

    Google Scholar 

  • Gordon SP, López-Sepulre A, Reznick DN (2012) Predation-associated differences in the sex linkage of guppy male coloration. Evolution 66:912–918

    PubMed  Google Scholar 

  • Grant PR (1986) Ecology and evolution of Darwin’s finches. Princeton University Press, Princeton

    Google Scholar 

  • Gurd DB (2007) Mechanistic analysis of interspecific competition using foraging trade-offs: implications for duck assemblages. Ecology 89:495–505

    Google Scholar 

  • Hairston NG (1949) The local distribution and ecology of the Plethodontid salamanders of the southern Appalachians. Ecol Monogr 19:47–73

    Google Scholar 

  • Hastings A (1980) Disturbance, coexistence, history, and competition for space. Theor Popul Biol 18:363–373

    Google Scholar 

  • Hovmöller R, Johansson F (2004) A phylogenetic perspective on larval spine morphology in Leucorrhinia (Odonata: Libellulidae) based on ITS1, 5.8S, and ITS2 rDNA sequences. Mol Phylogenet Evol 30:653–662

    PubMed  Google Scholar 

  • Hubbell SP (1979) Tree dispersion abundance and diversity in a tropical dry forest. Science 203:1299–1303

    CAS  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of species abundance and diversity. University Press, Princeton

    Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Google Scholar 

  • Jonsson M, Yeates GW, Wardle DA (2009) Patterns of invertebrate density and taxonomic richness across gradients of area, isolation, and vegetation diversity in a lake-island system. Ecography 32:963–927

    Google Scholar 

  • Juliano SA, Lawton JH (1990) The relationship between competition and morphology. I. Morphological patterns among co-occurring dytiscid beetles. J Anim Ecol 59:403–419

    Google Scholar 

  • Kallimanis AS, Mazaris AD, Tzanopoulos J, Halley JM, Panits JD, Sgardelis SP (2008) How does habitat diversity affect the species–area relationship? Glob Ecol Biogeogr 17:532–538

    Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-off in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80

    Google Scholar 

  • Kraft NJB, Cornwell BK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–282

    PubMed  Google Scholar 

  • Kruk C, Rodríguez-Gallego L, Meerhoff M, Quintans F, Lacerot G, Mazzeo M, Scasso F, Paggi JC, Peeters ETHM, Marten S (2009) Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshw Biol 54:2628–2641

    CAS  Google Scholar 

  • Lancaster J, Scudder GGE (1987) Aquatic Coleoptera and Hemiptera in some Canadian saline lakes: patterns in community structure. Can J Zool 65:1383–1390

    Google Scholar 

  • Larson DJ (1985) Structure in temperate predaceous diving beetle communities (Coleoptera: Dytiscidae). Holarctic Ecol 8:18–32

    Google Scholar 

  • Larson DJ (1990) Odonate predation as a factor influencing dytiscid beetle distribution and community structure. Quaest Entomol 26:151–162

    Google Scholar 

  • Larson DJ (1996) Colour patterns of dytiscine water beetles (Coleoptera: Dytiscidae, Dytiscinae) of arroyos, billabongs and wadis. Coleopts Bull 50:231–235

    Google Scholar 

  • Larson DJ, Alarie Y, Roughley RE (2000) Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic region, with emphasis on the fauna of Canada and Alaska. NRC Research Press, Ottawa

    Google Scholar 

  • Leibold MA (1996) A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat 147:784–812

    Google Scholar 

  • LepÅ¡ J, Å milauer P (2003) Multivariate analysis of ecological data using CANOCO. Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  • Losos JB (1990) A phylogenetic analysis of character displacement in Caribbean Anolis lizards. Evolution 44:558–569

    Google Scholar 

  • Losos JB, Leal M, Glor RE, de Queiroz K, Hertz PE, Schettino LR, Lara AC, Jackman TR, Larson A (2003) Niche lability in the evolution of a Caribbean lizard community. Nature 424:542–545

    CAS  PubMed  Google Scholar 

  • Lundkvist E, Landin J, Karlsson F (2002) Dispersing diving beetles (Dytiscidae) in agricultural and urban landscapes in south-eastern Sweden. Ann Zool Fenn 39:109–123

    Google Scholar 

  • Macan TT (1966a) The influence of predation on the fauna of a moorland fishpond. Arch Hydrobiol 61:432–452

    Google Scholar 

  • Macan TT (1966b) Predation by Salmo trutta in a moorland fishpond. Verhandlungen des Internationalen Verein Limnologie 16:1081–1087

    Google Scholar 

  • MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619

    Google Scholar 

  • Magalhães MF, Beja P, Canas C, Collares-Pereira MJ (2002) Functional heterogeneity of dry-season fish refugia across a Mediterranean catchment: the role of habitat and predation. Freshw Biol 47:1919–1934

    Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    PubMed  Google Scholar 

  • McNamara JM, Houston AI (1994) The effect of a change in foraging activity options on intake rate and predation rate. Am Nat 144:978–1000

    Google Scholar 

  • McPeek MA (1990) Behavioral differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology 71:1714–1726

    Google Scholar 

  • McPeek MA, Brown JM (2000) Building a regional species pool: diversification of the Enallagma damselflies in Eastern North America. Ecology 81:904–920

    Google Scholar 

  • Meding ME, Jackson LJ (2003) Biotic, chemical, and morphometric factors contributing to winter anoxia in prairie lakes. Limnol Oceanogr 48:1633–1642

    CAS  Google Scholar 

  • Mikolajewski DJ, Johansson F, Wohlfahrt B, Stoks R (2006) Invertebrate predation selects for the loss of a morphological antipredator trait. Evolution 60:1306–1310

    PubMed  Google Scholar 

  • Murkin HR, Blatt BDJ (1987) The interactions of vertebrates and invertebrates in peatlands and marshes. Mem Entomol Soc Can 140:15–30

    Google Scholar 

  • Nilsson AN (1984) Species richness and succession of aquatic beetles in some kettle-hole ponds in northern Sweden. Holarctic Ecol 7:149–156

    Google Scholar 

  • Nilsson AN (1986) Life cycles and habitats of the northern European Agabini (Coleoptera, Dytiscidae). Holarctic Ecol 8:18–32

    Google Scholar 

  • Nilsson AN, Söderberg H (1996) Abundance and species richness patterns of diving beetles (Coleoptera, Dytiscidae) from exposed and protected sites in 98 northern Swedish lakes. Hydrobiologia 321:83–88

    Google Scholar 

  • Nilsson AN, Svensson BW (1994) Dytiscid predators and culicid prey in two boreal snowmelt pool differing in temperature and duration. Ann Zool Fenn 31:365–376

    Google Scholar 

  • Nilsson AN, Svensson BW (1995) Assemblages of dytiscid predators and culicid prey in relation to environmental factors in natural and clear-cut boreal swamp forest pools. Hydrobiologia 308:183–196

    Google Scholar 

  • Nilsson AN, Elmberg J, Sjoberg K (1994) Abundance, and species richness patterns of predaceous diving beetles (Coleoptera, Dytiscidae) in Swedish lakes. J Biogeogr 21:197–206

    Google Scholar 

  • Östman ÖN, Griffin W, Strasburg JL, Brisson JA, Templeton AR, Knight TM, Chase JM (2007) Habitat area affects arthropod communities directly and indirectly through top predators. Ecography 30:359–366

    Google Scholar 

  • Paquette D, Alarie Y (1999) Dytiscid fauna (Coleoptera: Dytiscidae) in cattail ponds of northeastern Ontario, Canada. Coleopts Bull 53:160–166

    Google Scholar 

  • Peterka JJ (1989) Fishes in northern prairie wetlands. In: der Valk V (ed) Northern prairie wetlands. Iowa State University Press, Ames, pp 302–315

    Google Scholar 

  • Pitcher KA, Yee DA (2014) Investigating habitat use, prey consumption, and dispersal response as potential coexistence mechanisms using two morphologically similar species of predaceous diving beetles (Coleoptera: Dytiscidae). Ann Entomol Soc Am 107:582–591

    Google Scholar 

  • Poethke HJ, Hovestadt T (2002) Evolution of density and patch-size-dependent dispersal rates. Proc R Entomol Soc B 269:637–646

    Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcoding of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355–364

  • Reznick D (1982) The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. Evolution 36:1236–1250

    Google Scholar 

  • Ribera I, Foster GN, Vogler AP (2003) Does habitat use explain large scale species richness patterns of aquatic beetles in Europe? Ecography 26:145–152

    Google Scholar 

  • Ribera I, Nilsson AN, Vogler AP (2004) Phylogeny and historical biogeography of Agabinae diving beetles (Coleoptera) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 30:545–562

    CAS  PubMed  Google Scholar 

  • Ribera I, Vogler AP, Balke M (2008) Phylogeny and diversification of diving beetles (Coleoptera: Dytiscidae). Cladistics 24:563–590

    Google Scholar 

  • Richardson JML (2001) The relative roles of adaptation and phylogeny in determination of larval traits in diversifying anuran lineages. Am Nat 157:282–299

    CAS  PubMed  Google Scholar 

  • Richardson JML, Anholt BR (1995) Ontogenetic behaviour changes in larvae of the damselfly Ischnura verticalis (Odonata: Coenagriondae). Ethology 101:308–334

    Google Scholar 

  • Roughley RE, Larson DJ (1991) Aquatic Coleoptera of springs in Canada. Mem Entomol Soc Can S155:125–140

    Google Scholar 

  • Ruxton GD, Speed MP, Kelly DJ (2004) What, if anything, is the adaptive function of countershading? Anim Behav 68:445–451

    Google Scholar 

  • Schäfer ML, Lundkvist E, Landin J, Persson TZ, Lundström JO (2006) Influence of landscape structure on mosquitoes (Diptera: Culicidae) and dytiscids (Coleoptera: Dytiscidae) at five spatial scales in Swedish wetlands. Wetlands 26:57–68

    Google Scholar 

  • Scheffer M, van Ness EH (2006) Self organized similarity, the evolutionary emergence of groups of similar species. Proc Natl Acad Sci U S A 103:6230–6235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schluter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140:85–108

    CAS  PubMed  Google Scholar 

  • Sherratt TN, Rashed A, Beatty CD (2005) Hiding in plain sight. Trends Ecol Evol 20:414–416

    PubMed  Google Scholar 

  • Sih A (1987) Predators and prey lifestyles: an evolutionary and ecological overview. In: Kerfoot WC, Sih A (eds) Predation: direct and impacts on aquatic communities. New England University Press, Hanover, pp 203–224

    Google Scholar 

  • Silver CA, Vamosi SM, Bayley SE (2012) Temporary and permanent wetland macroinvertebrate communities: phylogenetic structure through time. Acta Oecol 39:1–10

    Google Scholar 

  • Smith VH, Foster BL, Grover JP, Holt RD, Leibold MA, deNoyelles F (2005) Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proc Natl Acad Sci U S A 102:4393–4396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stearns SC, Hoekstra RF (2001) Evolution: an introduction. Oxford University Press, Oxford

    Google Scholar 

  • Stein RA (1977) Selective predation, optimal foraging, and the predator–prey interaction between fish and crayfish. Ecology 58:1237–1253

    Google Scholar 

  • Stoks R, McPeek MA, Mitchell JL (2003) Evolution of prey behavior in response to changes in predation regime: damselflies in fish and dragonfly lakes. Evolution 57:574–585

    CAS  PubMed  Google Scholar 

  • Suhlman RS, Chase JM (2007) Increasing isolation reduces predator:prey species richness ratios in aquatic food webs. Oikos 116:1581–1587

    Google Scholar 

  • Summerhayes VS, Elton CS (1923) Bear Island. J Ecol 11:216–233

    Google Scholar 

  • Taylor AD (1990) Metapopulations, dispersal, and predator–prey dynamics: an overview. Ecology 71:429–433

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Nature 371:65–66

    Google Scholar 

  • Vamosi SM (2005) On the role of enemies in divergence and diversification of prey: a review and synthesis. Can J Zool 83:894–910

    Google Scholar 

  • Vamosi JC, Vamosi SM (2007) Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Divers Distrib 13:1–10

    Google Scholar 

  • Vamosi SM, Naydani CJ, Vamosi JC (2007) Body size and species richness along geographical gradients in Albertan diving beetle (Coleoptera: Dytiscidae) communities. Can J Zool 85:443–449

    Google Scholar 

  • Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18:572–592

    CAS  PubMed  Google Scholar 

  • Vinnersten TZP, Lundström JO, Petersson E, Landin J (2009) Diving beetle assemblages of flooded wetlands in relation to time, wetland type and Bti-based mosquito control. Hydrobiologia 635:189–203

    Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Google Scholar 

  • Webb CO, Losos JB, Agrawal AA (2006) Phylogenetic approaches to community ecology. Ecology 87:S1–S2

    Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363

    Google Scholar 

  • Wilcox C (2001) Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects. Isr J Zool 47:459–475

    Google Scholar 

  • Williams SE, Hero J-M (1998) Rainforest frogs of the Australian Wet Tropics: guild classification and the ecological similarity of declining species. Proc R Entomol Soc B 265:597–602

    CAS  Google Scholar 

  • Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000

    Google Scholar 

  • Wohlfahrt B (2010) The effects of predaceous dragonfly larvae (Odonata, Anisoptera) on community composition in dytiscid diving beetles (Coleoptera, Dytiscidae). Ph.D. Dissertation, University of Calgary, Alberta

    Google Scholar 

  • Wohlfahrt B, Vamosi SM (2009) Antagonistic selection or trait compensation? Diverse patterns of predation-induced prey mortality due to the interacting effects of prey phenotype and the environment. Evol Biol 36:386–396

    Google Scholar 

  • Wohlfahrt B, Vamosi SM (2012) Predation and habitat isolation influence the community composition-area relationship in dytiscid beetles (Coleoptera: Dytiscidae). Community Ecol 13:1–10

    Google Scholar 

  • Wohlfahrt B, Mikolajewski DJ, Joop G, Vamosi SM (2007) Ontogenetic changes in the association between antipredator responses and growth variables. Ecol Entomol 32:567–574

    Google Scholar 

  • Yee DA (2010) Behavior and aquatic plants as factors affecting predation by three species of larval predaceous diving beetles (Coleoptera: Dytiscidae). Hydrobiologia 637:33–43

    Google Scholar 

  • Yee DA, Taylor S, Vamosi SM (2009) Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles. Oecologia 160:25–36

    PubMed  Google Scholar 

  • Yu DW, Wilson HB (2001) The competition-colonization trade-off is dead; long live the competition-colonization trade-off. Am Nat 158:49–63

    CAS  PubMed  Google Scholar 

  • Zimmer KD, Hanson MA, Butler MG, Duffy WG (2001) Size distributions of aquatic invertebrates in two prairie wetlands, with and without fish, with implications for community production. Freshw Biol 46:1373–1386

    Google Scholar 

  • Zimmermann W (1931) Arbeitsweise der botanischen Phylogenetik und anderer Gruppierung-swissenschaften. In: Abderhalden E (ed) Handbuch der biologischen. Arbeitsmethoden, Berlin

    Google Scholar 

Download references

Acknowledgements

We are grateful to D. A. Yee for the opportunity to contribute a chapter to this volume, E. Bowles, J. Mee, S. Rogers and other members of the RV* lab group at the University of Calgary for feedback on an earlier version of the manuscript, and to the Natural Sciences and Engineering Research Council (NSERC) of Canada for continued support of our research on dytiscids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Vamosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vamosi, S.M., Wohlfahrt, B. (2014). Community Patterns in Dytiscids. In: Yee, D. (eds) Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9109-0_10

Download citation

Publish with us

Policies and ethics