Skip to main content

Mass Spectrometry-Based Protein Sequencing Platforms

  • Chapter
  • First Online:
Genomics and Proteomics for Clinical Discovery and Development

Part of the book series: Translational Bioinformatics ((TRBIO,volume 6))

Abstract

The amino-terminal sequencing methods was first introduced by the stepwise degradation of peptides applied in 1930 by Abderhalden and Brockmann (1930), which was improved by Pehr Edman (1949) in 1949. Until mid 1980s, the “Edman degradation” procedure had been used to determine the sequence of the N-terminal 30–40 amino acid residues in a protein routinely. The term “proteome”, linguistically equivalent to the concept of genome, was coined in 1994 to describe the complete set of proteins that is expressed according to the genome information and modified following expression in a lifetime of cells (Nature 1999). A simultaneous, high-throughput sequencing for more than thousands of peptides/proteins in complex biological samples had not been possible until both soft ionizations for biological molecules (MALDI, ESI etc.) (Tanaka et al. 1988; Karas and Hillenkamp 1988; Yamashita and Fenn 1984; Fenn et al. 1989) and mass spectrometry (MS)-driven sequencing technologies have been developed. This MS-based proteomics has dramatically revolutionized the sequencing and identification of proteins/peptides in complex biological samples. Clinical proteomics is nowadays a science to understand dynamic protein-centric biomolecular networks spatially and temporally in diseased cells and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderhalden E, Brockmann H. The contribution determining the composition of proteins especially polypeptides (German). Biochem Z. 1930;225:386–408.

    Google Scholar 

  • Ahrne E, Masselot A, Binz PA, Muller M, Lisacek F. A simple workflow to increase MS2 identification rate by subsequent spectral library search. Proteomics. 2009;9:1731–6.

    CAS  PubMed  Google Scholar 

  • Anderson NG. Adventures in clinical chemistry and proteomics: a personal account. Clin Chem. 2010a;56:154–60.

    CAS  PubMed  Google Scholar 

  • Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010b;56:177–85.

    CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    CAS  PubMed  Google Scholar 

  • Anderson DC, Li W, Payan DG, Noble WS. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and sequest scores. J Proteome Res. 2003;2:137–46.

    CAS  PubMed  Google Scholar 

  • Baldwin MA. Protein identification by mass spectrometry: issues to be considered. Mol Cell Proteomics. 2004;3(1):1–9.

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol. 1995;57:289–300.

    Google Scholar 

  • Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, MacCoss MJ. Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Anal Chem. 2010;82:833–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988;16:99–111.

    CAS  PubMed  Google Scholar 

  • Biemann K, Papayannopoulos IA. Amino acid sequencing of proteins. Acc Chem Res. 1994;27:370–8.

    CAS  Google Scholar 

  • Booth JG, Eilertson KE, Paul DB, Olinares HY. A Bayesian mixture model for comparative spectral count data in shotgun proteomics. Mol Cell Proteomics. 2011;10:M110.007203.

    PubMed Central  PubMed  Google Scholar 

  • Brosch M, Yu L, Hubbard T, Choudhary J. Accurate and sensitive peptide identification with mascot percolator. J Proteome Res. 2009;8:3176–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi H, Nesvizhskii AI. Semi-supervised model-based validation of peptide identifications in mass spectrometry-based proteomics. J Proteome Res. 2008;7:254–65.

    CAS  PubMed  Google Scholar 

  • Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in labelfree shotgun proteomics. Mol Cell Proteomics. 2008;7:2373–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung TW, Tureček F. Backbone and side-chain specific dissociations of z ions from non-tryptic peptides. J Am Soc Mass Spectrom. 2010;21:1279–95.

    CAS  PubMed  Google Scholar 

  • Chung TW, Tureček F. Proper and improper aminoketyl radicals in electron-based peptide dissociations. Int J Mass Spectrom. 2011;301:55–61.

    CAS  Google Scholar 

  • Colinge J, Masselot A, Giron M, Dessingy T, Magnin J. OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics. 2003;3:1454–63.

    CAS  PubMed  Google Scholar 

  • Coon JJ. Collisions or electrons? Protein sequence analysis in the 21st century. Anal Chem. 2009;81:3208–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coon JJ, Syka JEP, Schwartz JC, Shabanowitz J, Hunt DF. Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int J Mass Spectrom. 2004;236:33–42.

    CAS  Google Scholar 

  • Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7.

    CAS  PubMed  Google Scholar 

  • Csonka IP, Paizs B, Lendvay G, Suhai S. Proton mobility in protonated peptides: a joint molecular orbital and RRKM study. Rapid Commun Mass Spectrom. 2000;14:417–31.

    CAS  PubMed  Google Scholar 

  • Csonka IP, Paizs B, Lendvay G, Suhai S. Proton mobility and main fragmentation pathways of protonated lysylglycine. Rapid Commun Mass Spectrom. 2001;15:1457–72.

    CAS  PubMed  Google Scholar 

  • Dasari S, Chambers MC, Slebos RJ, Zimmerman LJ, Ham AJL, Tabb DL. TagRecon: high-throughput mutation identification through sequence tagging. J Proteome Res. 2010;9:1716–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du X, Yang F, Manes NP, Stenoien DL, Monroe ME, Adkins JN, et al. Linear discriminant analysis-based estimation of the false discovery rate for phosphopeptide identifications. J Proteome Res. 2008;7:2195–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudoit S, Yang YH, Callow MJ, Speed TP. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin. 2002;12:111–39.

    Google Scholar 

  • Edman P. A method for the determination of the amino acid sequence in peptides. Arch Biochem. 1949;22:475–6.

    CAS  PubMed  Google Scholar 

  • Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, Canterbury JD, Marsh DM, Kellmann M, Zabrouskov V, Wu CC, MacCoss MJ. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods. 2013;10(8):744–6.

    CAS  PubMed  Google Scholar 

  • Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007;4:207–14.

    CAS  PubMed  Google Scholar 

  • Elias JE, Gibbons FD, King OD, Roth FP, Gygi SP. Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat Biotechnol. 2004;22:214–9.

    CAS  PubMed  Google Scholar 

  • Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89.

    CAS  PubMed  Google Scholar 

  • Engel BJ, Pan P, Reid GE, Wells M, McLuckey SA. Charge state dependent fragmentation of gaseous protein ions in a quadrupole ion trap: bovine ferri-, ferro-, and apo-cytochrome c. Int J Mass Spectrom. 2002;219:171–87.

    CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.

    CAS  PubMed  Google Scholar 

  • Fenyo D, Beavis RC. A method for assessing the statistical significance of mass spectrometry based protein identifications using general scoring schemes. Anal Chem. 2003;75:768–74.

    PubMed  Google Scholar 

  • Frank A, Pevzner P. PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal Chem. 2005;77:964–73.

    CAS  PubMed  Google Scholar 

  • Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA. De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res. 2007;6:114–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frese CF, Maarten Altelaar AF, van den Toorn H, Nolting D, Griep-Raming J, Heck AJR, Mohammed S. Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal Chem. 2012;84:9668–73.

    CAS  PubMed  Google Scholar 

  • Fu X, Gharib SA, Green PS, Aitken ML, Frazer DA, Park DR, et al. Spectral index for assessment of differential protein expression in shotgun proteomics. J Proteome Res. 2008;7:845–54.

    CAS  PubMed  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, et al. Open mass spectrometry search algorithm. J Proteome Res. 2004;3:958–64.

    CAS  PubMed  Google Scholar 

  • Geiger T, Cox J, Mann M. Proteomics on an Orbitrap Benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics. 2010;9:2252–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert RG, Smith SC. Theory of unimolecular and recombination reactions. Oxford: Blackwell Scientific Publications; 1990. p. 52–132.

    Google Scholar 

  • Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:1–17.

    Google Scholar 

  • Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotech. 2010;28:83–9.

    CAS  Google Scholar 

  • Gu C, Tsaprailis G, Breci L, Wysocki VH. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides. Anal Chem. 2000;72:5804–13.

    CAS  PubMed  Google Scholar 

  • Gundry RLFQ, Jelinek CA, Van Eyk JE, Cotter RJ. Investigation of an albumin-enriched fraction of human serum and its albuminone. Proteomics Clin Appl. 2007;1:73–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison AG. Linear free energy correlations in mass spectrometry. J Mass Spectrom. 1999;34:577–89.

    CAS  Google Scholar 

  • Harrison AG, Yalcin T. Proton mobility in protonated amino acids and peptides. Int J Mass Spectrom Ion Process. 1997;165:339–47.

    Google Scholar 

  • Hill EG, Schwacke JH, Comte-Walters S, Slate EH, Oberg AL, Eckel-Passow JE, Terry M, Therneau TM, Schey KL. A statistical model for iTRAQ data analysis. J Proteome Res. 2008;7:3091–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hood BL, Darfer MM, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4:1741–53.

    CAS  PubMed  Google Scholar 

  • Hortin GL, Carr SA, Anderson NL. Introduction: advances in protein analysis for the clinical laboratory. Clin Chem. 2010;56:149–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Käll L, Canterbury J, Weston J, Noble WS, MacCoss MJ. A semi-supervised machine learning technique for peptide identification from shotgun proteomics datasets. Nat Methods. 2007;4:923–5.

    PubMed  Google Scholar 

  • Karas M, Hillenkamp F. Laser desorption ionization of protein with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60:2299–301.

    CAS  PubMed  Google Scholar 

  • Kawamura T, Nomura M, Tojo H, Fujii K, Hamasaki H, Mikami S, Bando Y, Kato H, Nishimura T. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) stage-related protein candidates upon non-metastatic lung adenocarcinoma. J Proteomics. 2010;73:1100–10.

    Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identification made by MS/MS and database search. Anal Chem. 2002;74:5383–92.

    CAS  PubMed  Google Scholar 

  • Kim S, Gupta N, Pevzner PA. Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res. 2008;7:3354–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim S, Bandeira N, Pevzner PA. Spectral profiles, a novel representation of tandem mass spectra and their applications for de novo peptide sequencing and identification. Mol Cell Proteomics. 2009;8:1391–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovács A, Sperling E, Lázár J, Balogh A, Kádas J, Szekrényes Á, Takács L, Kurucz I, Guttman A. Fractionation of the human plasma proteome for monoclonal antibody proteomics-based biomarker discovery. Electrophoresis. 2011;32:1916–25.

    PubMed  Google Scholar 

  • Kruger NA, Zubarev RA, Horn DM, McLafferty FW. Electron capture dissociation of multiply charged peptide cations. Int J Mass Spectrom. 1999;187:787–93.

    Google Scholar 

  • LaBaer J. Improving international research with clinical specimens: 5 achievable objectives. J Proteome Res. 2012;11:5592–601.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lam H, Deutsch EW, Aebersold R. Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics. J Proteome Res. 2010;9:605–10.

    CAS  PubMed  Google Scholar 

  • Li YF, Radivojac P. Computational approaches to protein inference in shotgun proteomics. BMC Bioinform. 2012;13 Suppl 16:S4.

    CAS  Google Scholar 

  • Li YF, Arnold RJ, Li Y, Radivojac P, Sheng Q, Tang H. A Bayesian approach to protein inference problem in shotgun proteomics. J Comput Biol. 2009;16:1183–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma B, Zhang KZ, Hendrie C, Liang CZ, Li M, Doherty-Kirby A, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:2337–42.

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Dasari S, Chambers MC, Litton MD, Sobecki SM, Zimmerman LJ, Halvey PJ, Schilling B, Drake PM, Gibson BW, et al. IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J Proteome Res. 2009;8:3872–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malm J, Végvári A, Rezei M, Upton P, Danmyr P, Nilsson R, Steinfelder E, Marko-Varga G. Large scale biobanking of blood – the importance of high density sample processing procedures. J Proteomics. 2012;76:116–24.

    CAS  PubMed  Google Scholar 

  • Marcotte EM. How do shotgun proteomics algorithms identify proteins? Nat Biotechnol. 2007;25:755–7.

    CAS  PubMed  Google Scholar 

  • Marko-Varga G. BioBanking – the Holy Grail of novel drug and diagnostic developments. J Clin Bioinform. 2011;1:14.

    Google Scholar 

  • Marko-Varga G, et al. Personalized medicine and proteomics: lessons from non-small cell lung cancer. J Proteome Res. 2007;6:2925–35.

    CAS  PubMed  Google Scholar 

  • Marko-Varga G, Végvári A, Welinder C, Rezei M, Edula G, Svensson K, Belting M, Laurell T, Fehniger TE. Clinical protein science: utilization of biobank resources and examples of current applications. J Proteome Res. 2011;11:5124–34.

    Google Scholar 

  • Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, et al. PRIDE: the proteomics identifications database. Proteomics. 2005;5:3537–45.

    CAS  PubMed  Google Scholar 

  • McLafferty FW. Tandem mass spectrometry. New York: Wiley; 1983.

    Google Scholar 

  • Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10:1785–93.

    CAS  PubMed  Google Scholar 

  • Morgan DG, Bursey MM. A linear free-energy correlation in the low energy tandem mass spectra of protonated tripeptides Gly–Gly-Xxx.Org. Mass Spectrom. 1994;29:354–9.

    CAS  Google Scholar 

  • Nature. Proteomics, transcriptomics: what’s in a name? Nature. 1999;402:715.

    Google Scholar 

  • Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics. 2010;73:2092–123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data – the protein inference problem. Mol Cell Proteomics. 2005;4:1419–40.

    CAS  PubMed  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.

    CAS  PubMed  Google Scholar 

  • Ning K, Fermin D, Nesvizhskii AI. Computational analysis of unassigned high quality MS/MS spectra in proteomic datasets. Proteomics. 2010;10:2712–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura M, Fukuda T, Fujii K, Kawamura T, Tojo H, Kihara M, Bando Y, Gazdar AF, Tsuboi M, Oshiro H, Nagao T, Ohira T, Ikeda N, Gotoh N, Kato H, Marko-Varga G, Nishimura T. Preferential expression of potential markers for cancer stem cells in large cell neuroendocrine carcinoma of the lung. An FFPE proteomic study. J Clin Bioinformatics. 2011;1:23.

    Google Scholar 

  • O’Hair RA, Reid GE. Neighboring group versus cis-elimination mechanisms for side chain loss from protonated methionine, methionine sulfoxide, and their peptides. Eur Mass Spectrom. 1999;5:325–34.

    Google Scholar 

  • Oberg AL, Mahoney DW, Eckel-Passow JE, Malone CJ, Wolfinger RD, Hill EG, Cooper LT, Onuma OK, Spiro C, Therneau TM, Bergen III HR. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J Proteome Res. 2008;7:225–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5:3226–45.

    CAS  PubMed  Google Scholar 

  • Paizs B, Suhai S. Theoretical study of the main fragmentation pathways for protonated glycylglycine. Rapid Commun Mass Spectrom. 2001a;15:651–63.

    CAS  PubMed  Google Scholar 

  • Paizs B, Suhai S. Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. I. Cis–trans isomerization around protonated amide bonds. Rapid Commun Mass Spectrom. 2001b;15:2307–23.

    CAS  Google Scholar 

  • Paizs B, Suhai S. Towards understanding some ion intensity relationships for the tandem mass spectra of protonated peptides. Rapid Commun Mass Spectrom. 2002;16:1699–702.

    CAS  PubMed  Google Scholar 

  • Paizs B, Suhai S. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage. J Am Soc Mass Spectrom. 2004;15:103–12.

    CAS  PubMed  Google Scholar 

  • Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–48.

    CAS  PubMed  Google Scholar 

  • Pan C, Park BH, McDonald WH, Carey PA, Banfield JF, VerBerkmoes NC, et al. A highthroughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry. Bmc Bioinform. 2010;11:18.

    Google Scholar 

  • Panchaud A, Jung S, Shaffer SA, Aitchison JD, Goodlett DR. Faster, quantitative, and accurate precursor acquisition independent from ion count. Anal Chem. 2011;83:2250–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavelka N, Fournier ML, Swanson SK, Pelizzola M, Ricciardi-Castagnoli P, Florens L, et al. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics. 2008;7:631–44.

    CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    CAS  PubMed  Google Scholar 

  • Polce MJ, Ren D, Wesdemiotis C. Dissociation of the peptide bond in protonated peptides. J Mass Spectrom. 2000;35:1391–8.

    CAS  PubMed  Google Scholar 

  • Prieto DA, Hood BL, Darfler MM, Guiel TG, Lucas DA, Conrads TP, et al. Liquid Tissue™: proteomic profiling of formalin-fixed tissues. Biotechniques. 2005;38:S32–5.

    Google Scholar 

  • Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11:601.

    CAS  PubMed  Google Scholar 

  • Schwartz BL, Bursey MM. Some proline substituent effect in the tandem mass spectrum of protonated pentaalainine. Biol Mass Spectrom. 1992;21:92–6.

    CAS  PubMed  Google Scholar 

  • Seidler J, Zinn N, Boehm ME, Lehmann WD. De novo sequencing of peptides by MS/MS. Proteomics. 2010;10:634–49.

    CAS  PubMed  Google Scholar 

  • Serang O, Noble WS. Faster mass spectrometry-based protein inference: junction trees are more efficient than sampling and marginalization by enumeration. IEEE/ACM Trans Comput Biol Bioinform. 2012;2012.

    Google Scholar 

  • Serang O, MacCoss MJ, Noble WS. Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data. J Proteome Res. 2010;9:5346–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen C, Wang Z, Shankar G, Zhang X, Li L. A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry. Bioinformatics. 2008;24:202–8.

    CAS  PubMed  Google Scholar 

  • Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol. 2004;5:699–711.

    CAS  PubMed  Google Scholar 

  • Summerfield SG, Cox KA, Gaskell SJ. The promotion of d-type ions during the low-energy collision-induced dissociation of some cysteic acid-containing peptides. J Am Soc Mass Spectrom. 1997;8:25–31.

    CAS  Google Scholar 

  • Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JE, Coon JJ. Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem. 2007;79:477–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swaney DL, McAlister GC, Coon JJ. Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods. 2008;5:959–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101:9528–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Syrstad EA, Tureček F. Hydrogen atom adducts to the amide bond. Generation and energetics of the amino(hydroxy)methyl radical in the gas phase. J Phys Chem. 2001;A105:11144–55.

    Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

    CAS  Google Scholar 

  • Tang X, Thibault P, Boyd RK. Fragmentation reactions of multiplyprotonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal Chem. 1993;65:2824–34.

    CAS  PubMed  Google Scholar 

  • Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP, Radivojac P. A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics. 2006;22:e481–8.

    CAS  PubMed  Google Scholar 

  • Tanner S, Shu H, Frank A, Wang LC, Zandi E, Mumby M, et al. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem. 2005;77:4626–39.

    CAS  PubMed  Google Scholar 

  • Tharakan R, Edwards N, Graham DRM. Data maximization by multipass analysis of protein mass spectra. Proteomics. 2010;10:1160–71.

    CAS  PubMed  Google Scholar 

  • Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17:520–5.

    CAS  PubMed  Google Scholar 

  • Tsaprailis G, Nair H, Somogyi Á, Wysocki VH, Zhong W, Futrell JH, Summerfield SG, Gaskell SJ. Influence of secondary structure on the fragmentation of protonated peptides. J Am Chem Soc. 1999;121:5142–54.

    CAS  Google Scholar 

  • Tureček F, Syrstad EA. Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. J Am Chem Soc. 2003;125:3353–69.

    PubMed  Google Scholar 

  • Vaisar T, Urban J. Probing the proline effect in CID of protonated peptides. J Mass Spectrom. 1996;31:1185–7.

    CAS  PubMed  Google Scholar 

  • Végvári A, Rezeli M, Döme B, Fehniger TE, Marko-Varga G. Translation science for targeted personalized medicine treatments. In: Sanders S, editor. Selected presentations from the 2011 Sino-american symposium on clinical and translational medicine. Washington, DC: Science/AAAS; 2011a. p. 36–7.

    Google Scholar 

  • Végvári Á, Welinder C, Lindberg H, Fehniger TE, Marko-Varga G. Biobank resources for future patient care: developments, principles and concepts. J Clin Bioinform. 2011b;1:24.

    Google Scholar 

  • Wilkins MR, Appel RD, Van Eyk JE, Chung MC, Gorg A, Hecker M, Huber LA, Langen H, Link AJ, Paik YK, et al. Guidelines for the next 10 years of proteomics. Proteomics. 2006;6(1):4–8.

    CAS  PubMed  Google Scholar 

  • Wisniewski JR, Ostasiewicz P, Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res. 2011;10:3040–9.

    CAS  PubMed  Google Scholar 

  • Wolters DA, Washburn MP, Yates III JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73:5683–90.

    CAS  PubMed  Google Scholar 

  • Wysocki VH, Tsaprailis G, Smith LL, Breci LA. Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom. 2000;35:1399–406.

    CAS  PubMed  Google Scholar 

  • Yamashita M, Fenn JB. Negative ion production with the electrospray ion source. J Phys Chem. 1984;88:4671–5.

    CAS  Google Scholar 

  • Yao C, Syrstad EA, Tureček F. Electron transfer to protonated beta-alanine N-methylamide in the gas phase: an experimental and computational study of dissociation energetics and mechanisms. J Phys Chem A. 2007;111:4167–80.

    CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.

    CAS  PubMed  Google Scholar 

  • YuW VJE, Huberty MC, Martin SA. Identification of the facile gasphase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix assisted laser desorption time-of-flight mass spectrometry. Anal Chem. 1993;65:3015–23.

    Google Scholar 

  • Zhang B, Chambers MC, Tabb DL. Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J Proteome Res. 2007;6:3549–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations – a nonergodic process. J Am Chem Soc. 1998;1998(120):3265–6.

    Google Scholar 

  • Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 2006;5:2339–47.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Nishimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nishimura, T., Tojo, H. (2014). Mass Spectrometry-Based Protein Sequencing Platforms. In: Marko-Varga, G. (eds) Genomics and Proteomics for Clinical Discovery and Development. Translational Bioinformatics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9202-8_5

Download citation

Publish with us

Policies and ethics