Skip to main content

Beyond the Boundary: New Insights from Inside the Space-Time Prism

  • Chapter
  • First Online:
Space-Time Integration in Geography and GIScience
  • 2034 Accesses

Abstract

The space-time prism is a key concept in time geography; it demarcates all locations that a mobile object can occupied given origin and destination anchors, the earliest departure time from origin, the latest arrival time at destination, and the maximum travel velocity. The prism boundary has been widely applied to measure the limits on mobility and accessibility given individual’s spatial and temporal constrains. However, little attention has been paid to the interior of the prism. This chapter provides some novel insights into the internal structure of the prism, which can improve not only the theoretical understanding of the space-time prism but also practical applications. Two properties of prism interior are demonstrated in detail: the probability to visit each location within the prism interior and the velocity profile associated with each location. To illustrate the potentials for applying these properties, two example implications are provided: a modified utility-based accessibility benefit measure and a new measure for the potential environmental costs of accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking from a physical perspective, the classic space-time prism is determined in part by a maximum “speed” (a scalar value) not a “velocity” (a vector with direction and magnitude). However, we will use the term “velocity” for consistency with the time geography literature.

References

  • Abraham, T., & Roddick, J. F. (1999). Incremental meta-mining from large temporal datasets. Advances in Database Technologies, 1552, 41–54. doi:10.1007/978-3-540-49121-7_4.

    Article  Google Scholar 

  • Banister, D. (2008). The sustainable mobility paradigm. Transport Policy, 15(2), 73–80.

    Article  Google Scholar 

  • Barth, M., An, F., Norbeck, J., & Ross, M. (1996). Model emission modeling: a physical approach. Transportation Research Record: Journal of the Transportation Research Board, 1520, 81–88. doi:10.3141/1520-10.

    Article  Google Scholar 

  • Black, J. A., Paez, A., Suthanaya, P.A., (2002). Sustainable urban transportation: performance indicators and some analytical approaches. Journal of Urban Planning and Development, 128(4), 184–209. doi: 10.1061/(ASCE)0733-9488(2002)128:4(184).

  • Bodzina, A. M., & Cirucci, L. (2009). Integrating geospatial technologies to examine urban land use change: A design partnership. Journal of Geography, 108(4–5), 186–197. doi:10.1080/00221340903344920.

    Article  Google Scholar 

  • Brillinger, D. R., Preisler, H. K., Ager, A. A., Kie, J. G., & Stewart, B. S. (2002). Employing stochastic differential equations to model wildlife motion. Bulletin of the Brazilian Mathematical Society, 33(3), 385–408. doi:10.1007/s005740200021.

    Article  Google Scholar 

  • Burns, L. D. (1979). Transportation, temporal, and spatial components of accessibility. Lexington: Lexington Books.

    Google Scholar 

  • Chow, K. V., Denning, K. C., Ferris, S., & Noronha, G. (1995). Long-term and short-term price memory in the stock market. Economics Letters, 49(3), 287–293. doi:10.1016/0165-1765(95)00690-H.

    Article  Google Scholar 

  • Couclelis, H. (2009). Rethinking time geography in the information age. Environment and Planning A, 41, 1556–1575. doi:10.1068/a4151.

    Article  Google Scholar 

  • Dong, X. J., Ben-Akiva, M. E., Bowman, J. L., & Walker, J. L. (2006). Moving from trip-based to activity-based measures of accessibility. Transportation Research Part A: Policy and Practice, 20(2), 163–180. doi:10.1016/j.tra.2005.05.002.

    Google Scholar 

  • Egenhofer, M. J. (1993). What’s special about spatial?: Database requirements for vehicle navigation in geographic space. ACM SIGMOD Record, 22(2), 398–402. doi:10.1145/170036.170096.

    Article  Google Scholar 

  • Ettema, D., & Timmermans, H. (2007). Space–time accessibility under conditions of uncertain travel times: Theory and numerical simulations. Geographical Analysis, 39(2), 217–240. doi:10.1111/j.1538-4632.2007.00702.x.

    Article  Google Scholar 

  • Ewing, R., Bartholomew, K., Winkelman, S., Walters, J., & Chen, D. (2008). Growing cooler: The evidence on urban development and climate change. Washington, DC: Urban Land Institute.

    Google Scholar 

  • Geurs, K. T., & Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Reviews and research directions. Journal of Transport Geography, 12(2), 127–140. doi:10.1016/j.jtrangeo.2003.10.005.

    Article  Google Scholar 

  • Hägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science Association, 24(1), 6–21. doi:10.1007/BF01936872.

    Article  Google Scholar 

  • Holmes, E. E., Lewis, M. A., Banks, J. E., & Veit, R. R. (1994). Partial differential equations in ecology: Spatial interactions and population dynamics. Ecology, 75(1), 17–29. doi:10.2307/1939378.

    Article  Google Scholar 

  • Horne, J. S., Garton, E. O., Krone, S. M., & Lewis, J. S. (2007). Analyzing animal movements using Brownian bridges. Ecology, 88(9), 2354–2363. doi:10.1890/06-0957.1.

    Article  Google Scholar 

  • Kuijpers, B., & Othman, W. (2009). Modeling uncertainty of moving objects on road networks via space-time prisms. International Journal of Geographical Information Science, 23(9), 1095–1117. doi:10.1080/13658810802097485.

    Article  Google Scholar 

  • Kwan, M. P. (1998). Space-time and integral measures of individual accessibility: A comparative analysis using a point-based framework. Geographical Analysis, 30(3), 191–216. doi:10.1111/j.1538-4632.1998.tb00396.x.

    Article  Google Scholar 

  • Kwan, M. P. (1999). Gender and individual access to urban opportunities: A study using space-time measures. The Professional Geographer, 51(2), 211–227. doi:10.1111/0033-0124.00158.

    Article  Google Scholar 

  • Lenntorp, B. (1977). Paths in space-time environments: A time geographic study of movement possibilities of individuals. Environment and Planning, 9(8), 961–972. doi:10.1068/a090961.

    Article  Google Scholar 

  • Lin, H. Y. (2012). Using compressed index structures for processing moving objects in large spatio-temporal databases. Journal of Systems and Software, 85(1), 167–177. doi:10.1016/j.jss.2011.08.005.

    Article  Google Scholar 

  • Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica, 59(5), 1279–1313.

    Article  Google Scholar 

  • Miller, H. J. (1991). Measuring accessibility using space-time prism concepts within geographic information systems. International Journal of Geographical Information System, 5(3), 287–301. doi:10.1080/02693799108927856.

    Article  Google Scholar 

  • Miller, H. J. (1999). Measuring space-time accessibility benefits within transportation networks: Basic theory and computational methods. Geographical Analysis, 31, 187–212. doi:10.1111/j.1538-4632.1999.tb00408.x.

    Article  Google Scholar 

  • Miller, H. J. (2005a). A measurement theory for time geography. Geographical Analysis, 37(1), 17–45. doi:10.1111/j.1538-4632.2005.00575.x.

    Article  Google Scholar 

  • Miller, H. J. (2005b). Necessary space-time conditions for human interaction. Environment and Planning B: Planning and Design, 32(3), 381–401.

    Article  Google Scholar 

  • Miller, H. J., & Bridwell, S. A. (2009). A field-based theory for time geography. Annals of the Association of American Geographers, 99, 49–75. doi:10.1080/00045600802471049.

    Article  Google Scholar 

  • Neutens, T., Witlox, F., Weghe, V. D., & Maeyer, P. H. D. (2007). Space-time opportunities for multiple agents: A constraint-based approach. International Journal of Geographical Information Science, 21(10), 1061–1076. doi:10.1080/13658810601169873.

    Article  Google Scholar 

  • Nicholls, S., & Shafer, C. S. (2001). Measuring accessibility and equity in a local park system: The utility of geospatial technologies to park and recreation professionals. Journal of Park and Recreation Administration, 19(4), 102–124.

    Google Scholar 

  • O’Sullivan, D., Morrison, A., & Shearer, J. (2000). Using desktop GIS for the investigation of accessibility by public transport: An isochrones approach. International Journal of Geographical Information Science, 14(11), 85–104. doi:10.1080/136588100240976.

    Article  Google Scholar 

  • Rostek, S., & Schöbel, R. (2006). Risk preference based option pricing in a fractional Brownian market, No 299. Tübinger Diskussionsbeiträge, University of Tübingen, School of Business and Economics.

    Google Scholar 

  • Shaw, S. L., & Wang, D. M. (2000). Handling disaggregate spatiotemporal travel data in GIS. GeoInformatica, 4(2), 1384–6175. doi:10.1023/A:1009824122914.

    Article  Google Scholar 

  • United States Environmental Protection Agency (EPA). (2010). Fast facts: U.S. Transportation sector greenhouse gas emissions. Resource document. EPA Office of Transportation and Air Quality. http://www.epa.gov/otaq/climate/basicinfo.htm. Accessed 3 July 2012.

  • Weibull, J. W. (1976). An axiomatic approach to the measurement of accessibility. Regional Science and Urban Economics, 6(4), 357–379. doi:10.1016/0166-0462(76)90031-4.

    Article  Google Scholar 

  • Wilson, A. G. (1976). Retailers’ profits and consumers’ welfare in a spatial interaction shopping model. In I. Masser (Ed.), Theory and Practice in Regional Science (London Papers in Regional Science) (pp. 42–57). London: Pion Ltd.

    Google Scholar 

  • Winter, S., & Yin, Z. C. (2010a). The elements of probabilistic time geography. Geoinformatica, 15(3), 417–434. doi:10.1007/s10707-010-0108-1.

    Article  Google Scholar 

  • Winter, S., & Yin, Z. C. (2010b). Directed movements in probabilistic time geography. International Journal of Geographical Information Science, 24(9), 1349–1365. doi:10.1080/13658811003619150.

    Article  Google Scholar 

  • Wu, Y. H., & Miller, H. J. (2001). Computational tools for measuring space-time accessibility within transportation networks with dynamic flow. Journal of Transportation and Statistics, 4, 1–14.

    Google Scholar 

  • Yu, H., & Shaw, S. L. (2008). Exploring potential human activities in physical and virtual spaces: A spatio-temporal GIS approach. International Journal of Geographic Information Science, 22, 409–430. doi:10.1080/13658810701427569.

    Article  Google Scholar 

Download references

Acknowledgements

An award from the National Science Foundation (BCS – 1224102) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Song, Y., Miller, H.J. (2015). Beyond the Boundary: New Insights from Inside the Space-Time Prism. In: Kwan, MP., Richardson, D., Wang, D., Zhou, C. (eds) Space-Time Integration in Geography and GIScience. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9205-9_12

Download citation

Publish with us

Policies and ethics