Skip to main content

Production of Withanolides from Cell and Organ Cultures of Withania somnifera (L.) Dunal

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Withania somnifera (L.) Dunal. (Indian ginseng) is one of the most important medicinal plants used as a crude drug for its preventive and therapeutic purposes. Among the diverse constituents of Withania, withanolides are found to be the major components responsible for their biological and pharmacological actions. On the other hand, difficulty in supplying the pure withanolides in sufficient quantity prevents the development of Withania for clinical medicines. Field cultivation of Withania is time consuming and it needs extensive efforts for quality control as the growth is susceptible to many environmental factors including soil, climate, pathogens and pests. To overcome these problems, cell and organ cultures have been widely explored for more rapid and efficient production of Withania biomass and withanolides. Recently, cell and organ cultures of W. somnifera have been developed in laboratory scale with a view to establish large scale production using bioreactors. Various physical and chemical parameters affecting the biomass production and withanolide accumulation have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4- Dichlorophenoxy acetic acid

BAP:

6-Benzylaminopurine

DW:

Dry weight

FW:

Fresh weight

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

KN:

Kinetin

MJ:

Methyl jasmonate

MS medium:

Murashige and Skoog medium

NAA:

α- Naphthalene acetic acid

SA:

Salicylic acid

References

  1. Gupta GL, Rana AC (2007) Withania somnifera (Ashwagandha): a review. Pharmacog Rev 1:129–136

    CAS  Google Scholar 

  2. Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1093–1105

    Article  CAS  Google Scholar 

  3. Bhattacharya SK, Bhattacharya D, Sairam K, Ghosal S (2002) Effect of Withania somnifera glycowithanolides on rat model of tardie dyskinesia. Phytomedicine 9:167–170

    Article  PubMed  CAS  Google Scholar 

  4. Dhuley JN (2000) Adaptogenic and cardioprotective action of ashwagandha in rats and frogs. J Ethanopharmacol 70:57–63

    Article  CAS  Google Scholar 

  5. Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    Article  PubMed  CAS  Google Scholar 

  6. Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Tohda C, Kuboyama T, Komatsu K (2005) Search for natural products related to regeneration the neuronal network. Neurosignals 14:34–45

    Article  PubMed  CAS  Google Scholar 

  8. Tohda C, Komatsu K, Kuboyama T (2005) Scientific basis of anti-dementia drugs of constituents from ashwagandha (Withania somnifera). J Tad Med 22:176–182

    CAS  Google Scholar 

  9. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  10. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20:10–153

    Article  Google Scholar 

  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  12. Nagella P, Murthy HN (2010) Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour Technol 101:6735–6739

    Article  PubMed  CAS  Google Scholar 

  13. Sivanandhan G, Kapil Dev G, Jeyaraj M, Rajesh M, Muthuselvam M, Selvaraj N, Manickavasagam M, Ganapathi A (2013) A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal. Protoplasma 250:885–898

    Article  PubMed  CAS  Google Scholar 

  14. Rani G, Arora S, Nagpal A (2003) Direct rhizogenesis from in vitro leaves of Withania somnifera (L.) Dunal. J Herbs Spices Med Plants 10:47–54

    Article  Google Scholar 

  15. Wadegaonkar PA, Bhagwat KA, Rai MK (2006) Direct rhizogenesis and establishment of fast growing normal root organ culture of Withania somnifera Dunal. Plant Cell Tiss Organ Cult 84:223–225

    Article  Google Scholar 

  16. Praveen N, Murthy HN (2010) Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol Plant 32:1017–1022

    Article  CAS  Google Scholar 

  17. Sivanandhan G, Arun M, Mayavan S, Rajesh M, Mariashibu TS, Manickavasagam M, Selvaraj N, Ganapathi A (2012) Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind Crop Prod 37:124–129

    Article  CAS  Google Scholar 

  18. Ray S, Ghosh B, Sen S, Jha S (1996) Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium rhizogenes. Planta Med 62:571–573

    Article  PubMed  CAS  Google Scholar 

  19. Pawar PK, Maheshwari VL (2004) Agrobacterium rhizogenes mediated hairy root induction in two medicinally important members of family Solanaceae. Indian J Biotechnol 3:414–417

    Google Scholar 

  20. Kumar V, Kotamballi N, Chidambara M, Bhamid S, Sudha CG, Ravishankar GA (2005) Genetically modified hairy roots of Withania somnifera Dunal: a potent source of rejuvenating principles. Rejuv Res 8:37–45

    Article  CAS  Google Scholar 

  21. Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  PubMed  CAS  Google Scholar 

  22. Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol 50:975–981

    Article  PubMed  CAS  Google Scholar 

  23. Sivanandhan G, Kapil Dev G, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tiss Organ Cult 114:121–129

    Article  CAS  Google Scholar 

  24. Mantell SH, Smith H (1983) Cultural factors that influence secondary metabolite accumulation in plant cell and tissue cultures. In: Mantell SH, Smith H (eds) Plant biotechnology, vol 18, Society for experimental biology seminar series. Cambridge University Press, Cambridge, pp 75–108

    Google Scholar 

  25. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-014-0467-7

    Google Scholar 

  26. Ciddi V (2006) Withaferin A from cell cultures of Withania somnifera. Indian J Pharm Sci 68:490–492

    Article  CAS  Google Scholar 

  27. Sabir F, Sangwan RS, Singh J, Misra LN, Pathak N, Sangwan NS (2011) Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal.). Plant Biotechnol Rep 5:127–134

    Article  Google Scholar 

  28. Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–67

    Article  PubMed  CAS  Google Scholar 

  29. Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  30. Nitsch JP, Nitsch C (1969) Haploid plants form pollen grains. Science 163:85–87

    Article  PubMed  CAS  Google Scholar 

  31. Chu CC, Wang CC, Sun CS, Chen H, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  32. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  33. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  34. Wang Y, Weathers PJ (2007) Sugars proportionately affect artemisinin production. Plant Cell Rep 26:1073–1081

    Article  PubMed  Google Scholar 

  35. Murthy HN, Praveen N (2013) Carbon sources and medium pH affects the growth of Withania somnifera (L.) Dunal adventitious roots and withanolide A production. Nat Prod Res 27:185–189

    Article  PubMed  CAS  Google Scholar 

  36. Praveen N, Murthy HN (2012) Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crop Prod 35:241–243

    Article  CAS  Google Scholar 

  37. Sivanandhan G, Rajesh M, Arun M, Jeyaraj M, Dev GK, Manickavasagam M, Selvaraj N, Ganapathi A (2012) Optimization of carbon source for hairy root growth and withaferin a and withanone production in Withania somnifera. Nat Prod Commun 7:1271–1272

    PubMed  CAS  Google Scholar 

  38. Doma M, Abhayankar G, Reddy VD, Kavi Kishor PB (2012) Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L.). Indian J Exp Biol 50:484–490

    PubMed  Google Scholar 

  39. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149

    Article  CAS  Google Scholar 

  40. McDonald KA, Jackman AP (1989) Bioreactor studies of growth and nutrient utilization in Alfalfa suspension cultures. Plant Cell Rep 8:455–458

    Article  PubMed  CAS  Google Scholar 

  41. Wu Y, Zhong JJ (1997) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68:89–99

    Article  Google Scholar 

  42. Nagella P, Murthy HN (2011) Effects of macroelements and nitrogen source on biomass accumulation and withanolide A production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell Tiss Organ Cult 104:119–124

    Article  CAS  Google Scholar 

  43. Murthy HN, Praveen N (2012) Influence of macro elements and nitrogen source on adventitious root growth and withanolide-A production in Withania somnifera (L.) Dunal. Nat Prod Res 26:466–473

    Article  PubMed  CAS  Google Scholar 

  44. Praveen N, Murthy HN (2013) Withanolide A production from Withania somnifera hairy root cultures with improved growth by altering the concentrations of macroelements and nitrogen source in the medium. Acta Physiol Plant 35:811–816

    Article  CAS  Google Scholar 

  45. Franklin CI, Dixon RA (1994) Initiation and maintenance of callus and cells suspension cultures. In: Dixon RA, Gonzales RA (eds) Plant cell cultures – a practical approach, 2nd edn. IRL Press, Oxford, pp 1–25

    Google Scholar 

  46. Baldi A, Singh D, Dixit VK (2008) Dual elicitation for improved production of withaferin A by cell suspension cultures of Withania somnifera. Appl Biochem Biotechnol 151:556–564

    Article  PubMed  CAS  Google Scholar 

  47. Sivanandhan G, Arun M, Mayavan S, Rajesh M, Jeyaraj M, Kapil Dev G, Manickavasagam M, Selvaraj M, Ganapathi A (2012) Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L.) Dunal. Appl Biochem Biotechnol 168:681–696

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Department of Biotechnology, New Delhi (DBT-KUD-IPLS Programme BT/PR14555/INF/22/126/2010), University Grants Commission, New Delhi [Project No. 41-423/2012 (SR)], and Department of Atomic Energy, Mumbai (BRNS Project No. 2013/35/BRNS/20). Dr. H. N. Murthy acknowledges ‘The Korean Federation of Science and Technology Societies’ (KOFST), South Korea for the award of Brain pool fellowship (131S-4-3-0523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosakatte Niranjana Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagella, P., Murthy, H.N. (2014). Production of Withanolides from Cell and Organ Cultures of Withania somnifera (L.) Dunal. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_12

Download citation

Publish with us

Policies and ethics