Skip to main content

Melatonin Rich Plants: Production, Significance in Agriculture and Human Health

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Melatonin (N-acetyl-5-methoxytryptamine) has many therapeutic benefits for humans such as regulation of sleep cycle, aging, depression, and cancer. Melatonin was first discovered in fruits and vegetables in the mid-1990s. Since then, Melatonin has been recognized in large number of species including medicinal plants such as St. John’s wort, feverfew and Echinacea. The melatonin content varies from plant to plant due to genetic and environmental factors; therefore there is a need to have integrated system (such as bioreactors) for large-scale propagation of the high melatonin containing elite plant germplasm under controlled environmental conditions. Recently, major advances have been made to understand the melatonin biosynthetic pathway in plants. Melatonin performs important roles in plants working as a growth regulator as well as environmental stress protector. The enhancement of endogenous melatonin levels in plants is beneficial in both agriculture as well as in human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod J, Wurtman RJ, Snyder SH (1965) Control of hydroxyindole O-methyltransferase activity in the rat pineal gland by environmental lighting. J Biol Chem 240:949–954

    PubMed  CAS  Google Scholar 

  2. Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273:2813–2838

    PubMed  CAS  Google Scholar 

  3. Benarroch EE (2008) Suprachiasmatic nucleus and melatonin: reciprocal interactions and clinical correlations. Neurology 71:594–598

    PubMed  Google Scholar 

  4. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 80:2587

    CAS  Google Scholar 

  5. Lerner AB, Case JD, Mori W, Wright MR (1959) Melatonin in peripheral nerve. Nature 183:1821

    PubMed  CAS  Google Scholar 

  6. Cahill GM, Grace MS, Besharse JC (1991) Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol 11:529–560

    PubMed  CAS  Google Scholar 

  7. Zawilska JB, Nowak JZ (1992) Regulatory mechanisms in melatonin biosynthesis in retina. Neurochem Int 20:23–36

    PubMed  CAS  Google Scholar 

  8. Vivien-Roels B, Pevet P, Beck O, Fevre-Montange M (1984) Identification of melatonin in the compound eyes of an insect, the locust (Locusta migratoria), by radioimmunoassay and gas chromatography-mass spectrometry. Neurosci Lett 49:153–157

    PubMed  CAS  Google Scholar 

  9. Skinner DC, Malpaux B (1999) High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140:4399–4405

    PubMed  CAS  Google Scholar 

  10. Yu H-S, Yee RW, Howes KA, Reiter RJ (1990) Diurnal rhythms of immunoreactive melatonin in the aqueous humor and serum of male pigmented rabbits. Neurosci Lett 116:309–314

    PubMed  CAS  Google Scholar 

  11. Reiter RJ, Tan D-X, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    PubMed  CAS  Google Scholar 

  12. Murch SJ, Simmons CB, Saxena PK (1997) Melatonin in feverfew and other medicinal plants. Lancet 350:1598–1599

    PubMed  CAS  Google Scholar 

  13. Ramakrishna A, Giridhar P, Sankar KU, Ravishankar GA (2012) Melatonin and serotonin profiles in beans of Coffea species. J Pineal Res 52:470–476

    PubMed  CAS  Google Scholar 

  14. Chen G, Huo Y, Tan D-X, Liang Z, Zhang W, Zhang Y (2003) Melatonin in Chinese medicinal herbs. Life Sci 73:19–26

    PubMed  CAS  Google Scholar 

  15. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627

    PubMed  CAS  Google Scholar 

  16. Manchester LC, Tan D-X, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67:3023–3029

    PubMed  CAS  Google Scholar 

  17. Reiter RJ, Manchester LC, Tan D (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21:920–924

    PubMed  CAS  Google Scholar 

  18. Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J Pineal Res 49:95–100

    PubMed  CAS  Google Scholar 

  19. Vitalini S, Gardana C, Zanzotto A, Fico G, Faoro F, Simonetti P, Iriti M (2011) From vineyard to glass: agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J Pineal Res 51:278–285

    PubMed  CAS  Google Scholar 

  20. Stürtz M, Cerezo AB, Cantos-Villar E, Garcia-Parrilla MC (2011) Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem 127:1329–1334

    PubMed  Google Scholar 

  21. Mena P, Gil-Izquierdo Á, Moreno DA, Martí N, García-Viguera C (2012) Assessment of the melatonin production in pomegranate wines. LWT Food Sci Technol 47:13–18

    CAS  Google Scholar 

  22. Sae-Teaw M, Johns J, Johns NP, Subongkot S (2012) Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J Pineal Res 55:58–64

    PubMed  Google Scholar 

  23. Ramakrishna A, Giridhar P, Sankar KU, Ravishankar GA (2012) Endogenous profiles of indoleamines: serotonin and melatonin in different tissues of Coffea canephora as analyzed by HPLC and LC-MS-ESI. Acta Physiol Plant 34:393–396

    CAS  Google Scholar 

  24. Zhao Y, Tan D-X, Lei Q, Chen H, Wang L, Li Q-T, Gao Y, Kong J (2013) Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res 55:79–88

    PubMed  CAS  Google Scholar 

  25. Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    CAS  Google Scholar 

  26. Kang S, Kang K, Lee K, Back K (2007) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    PubMed  CAS  Google Scholar 

  27. Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Kawasaki T, Shimamoto K (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285:11308–11313

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Kang K, Lee K, Park S, Byeon Y, Back K (2012) Molecular cloning of rice serotonin N‐acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res 55:7–13

    PubMed  Google Scholar 

  29. Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K (2011) Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J Pineal Res 50:304–309

    PubMed  CAS  Google Scholar 

  30. Park S, Lee K, Kim Y-S, Back K (2011) Tryptamine 5‐hydroxylase‐deficient Sekiguchi rice induces synthesis of 5‐hydroxytryptophan and N‐acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. J Pineal Res 52:211–216

    PubMed  Google Scholar 

  31. Cardinali DP, Vidal MF, Vigo DE (2012) New developments in the treatment of primary insomnia in elderly patients: focus on prolonged-release melatonin. Chronobiol Physiol Ther 2:67–79

    CAS  Google Scholar 

  32. Braam W, Didden R, Smits MG, Curfs LMG (2008) Melatonin for chronic insomnia in Angelman syndrome: a randomized placebo-controlled trial. J Child Neurol 23:649–654

    PubMed  Google Scholar 

  33. Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2013) Melatonin treatment for age-related insomnia. J Clin Endocrin Metab 86:4727–4730

    Google Scholar 

  34. Jan JE, Espezel H, Appleion RE (2008) The treatment of sleep disorders with melatonin. Dev Med Child Neurol 36:97–107

    Google Scholar 

  35. Dodge NN, Wilson GA (2001) Melatonin for treatment of sleep disorders in children with developmental disabilities. J Child Neurol 16:581–584

    PubMed  CAS  Google Scholar 

  36. Pacchierotti C, Iapichino S, Bossini L, Pieraccini F, Castrogiovanni P (2001) Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol 22:18–32

    PubMed  CAS  Google Scholar 

  37. Mostafavi S-A, Mohammadi MR, Hosseinzadeh P, Eshraghian MR, Akhondzadeh S, Hosseinzadeh-Attar MJ, Ranjbar E, Kooshesh SM-A, Keshavarz S-A (2012) Dietary intake, growth and development of children with ADHD in a randomized clinical trial of Ritalin and Melatonin co-administration: through circadian cycle modification or appetite enhancement? Iran J Psychiatry 7:114–119

    PubMed  PubMed Central  Google Scholar 

  38. SLynn J, Forbes D, Duncan V, Morgan DG, Malouf R (2011) Melatonin treatment may be effective for the treatment of dementia-related behavior disturbances. http://summaries.cochrane.org/CD003802/melatonin-treatment-may-be-effective-for-the-treatment-of-dementia-related-behavior-disturbances

  39. Brigo F, Del Felice A (2012) Melatonin as add-on treatment for epilepsy. Cochrane Database Syst Rev 6, CD006967. doi:10.1002/14651858.CD006967.pub2

    PubMed  Google Scholar 

  40. Baird AL, Coogan AN, Siddiqui A, Donev RM, Thome J (2012) Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol Psychiatry 17:988–995

    PubMed  CAS  Google Scholar 

  41. Tan DX, Reiter RJ, Manchester LC, Yan M-T, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181

    PubMed  CAS  Google Scholar 

  42. Kelly MR, Loo G (2007) Melatonin inhibits oxidative modification of human low‐density lipoprotein. J Pineal Res 22:203–209

    Google Scholar 

  43. Reiter RJ, Tan D-X, Qi W, Manchester LC, Karbownik M, Calvo JR (2000) Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Neurosignals 9:160–171

    CAS  Google Scholar 

  44. Hardeland R, Backhaus C, Fadavi A (2007) Reactions of the NO redox forms NO+, • NO and HNO (protonated NO–) with the melatonin metabolite N1‐acetyl‐5‐methoxykynuramine. J Pineal Res 43:382–388

    PubMed  CAS  Google Scholar 

  45. Cano A, Alcaraz O, Arnao MB (2003) Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media. Anal Bioanal Chem 376:33–37

    PubMed  CAS  Google Scholar 

  46. Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359

    PubMed  CAS  Google Scholar 

  47. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    PubMed  CAS  Google Scholar 

  48. Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Asada H, Yamagata Y, Sugino N (2013) Melatonin as a free radical scavenger in the ovarian follicle [review]. Endocr J 60:1–13

    PubMed  CAS  Google Scholar 

  49. Di Bella G, Mascia F, Gualano L, Di Bella L (2013) Melatonin anticancer effects: review. Int J Mol Sci 14:2410–2430

    PubMed  PubMed Central  Google Scholar 

  50. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27:189–200

    PubMed  CAS  Google Scholar 

  51. Guerrero J, Reiter R (2002) Melatonin-immune system relationships. Curr Top Med Chem 2:167–179

    PubMed  CAS  Google Scholar 

  52. Mohamed M, Srinivasan V, Maestroni G, Rosenstein RE, Oter S (2014) Melatonin and immune function: clinical significance. Melatonin Melaton Drugs Clin Pract 143–157

    Google Scholar 

  53. Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683

    PubMed  PubMed Central  Google Scholar 

  54. Srinivasan V, Pandi-Perumal SR, Brzezinski A, Bhatnagar K, Cardinali D (2011) Melatonin, immune function and cancer. Recent Pat Endocr Metab Immune Drug Discov 5:109–123

    PubMed  CAS  Google Scholar 

  55. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini P-L (2011) 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 60:319–326

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Sack RL, Lewy AJ, Erb DL, Vollmer WM, Singer CM (2007) Human melatonin production decreases with age. J Pineal Res 3:379–388

    Google Scholar 

  57. Sakotnik A, Liebmann PM, Stoschitzky K, Lercher P, Schauenstein K, Klein W, Eber B (1999) Decreased melatonin synthesis in patients with coronary artery disease. Eur Heart J 20:1314–1317

    PubMed  CAS  Google Scholar 

  58. Liu R-Y, Zhou J-N, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-ε4/4 genotype. J Clin Endocrinol Metab 84:323–327

    PubMed  CAS  Google Scholar 

  59. Wu Y-H, Swaab DF (2004) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152

    Google Scholar 

  60. Belforte NA, Moreno MC, De Zavalía N, Sande PH, Chianelli MS, Keller Sarmiento MI, Rosenstein RE (2010) Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res 48:353–364

    PubMed  CAS  Google Scholar 

  61. Hardeland R (2009) Neuroprotection by radical avoidance: search for suitable agents. Molecules 14:5054–5102

    PubMed  CAS  Google Scholar 

  62. Nowak JZ, Zawilska JB (1998) Melatonin and its physiological and therapeutic properties. Pharm World Sci 20:18–27

    PubMed  CAS  Google Scholar 

  63. Van Tassel DL, Roberts NJ, O’neill SD (1995) Melatonin from higher plants: isolation and identification of N-acetyl-5-methoxytryptamine. Plant Physiol 108:101

    Google Scholar 

  64. Kolar J, Machackova I, Illnerova H, Prinsen E, Van Dongen W, Van Onckelen HA (1995) Melatonin in higher plant determined by radioimmunoassay and high performance liquid chromatography-mass spectrometry-mass spectrometry. Biol Rhythm Res 26:406–409

    Google Scholar 

  65. Tan D-X, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    PubMed  CAS  Google Scholar 

  66. Benot S, Gobema R, Reiter RJ, Garcia‐Mauriño S, Osuna C, Guerrero JM (2007) Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res 27:59–64

    Google Scholar 

  67. Reiter RJ, Tan D-X (2002) Melatonin: an antioxidant in edible plants. Ann N Y Acad Sci 957:341

    PubMed  CAS  Google Scholar 

  68. Nagata C, Nagao Y, Shibuya C, Kashiki Y, Shimizu H (2005) Association of vegetable intake with urinary 6-sulfatoxymelatonin level. Cancer Epidemiol Biomarkers Prev 14:1333–1335

    PubMed  CAS  Google Scholar 

  69. Oba S, Nakamura K, Sahashi Y, Hattori A, Nagata C (2008) Consumption of vegetables alters morning urinary 6‐sulfatoxymelatonin concentration. J Pineal Res 45:17–23

    PubMed  CAS  Google Scholar 

  70. Johns NP, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J Agric Food Chem 61:913–919

    PubMed  CAS  Google Scholar 

  71. Blask DE, Dauchy RT, Sauer LA, Krause JA (2004) Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential rol. Carcinogenesis 25:951–960

    PubMed  CAS  Google Scholar 

  72. Murch SJ, Saxena PK (2006) A melatonin‐rich germplasm line of St John’s wort (Hypericum perforatum L.). J Pineal Res 41:284–287

    PubMed  CAS  Google Scholar 

  73. Murch SJ, Choffe KL, Victor JMR, Slimmon TY, Krishnaraj S, Saxena PK (2000) Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John’s wort (Hypericum perforatum. cv ‘Anthos’). Plant Cell Rep 19:576–581

    CAS  Google Scholar 

  74. Murch SJ, Alan AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283

    PubMed  CAS  Google Scholar 

  75. Badria FA (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food 5:153–157

    PubMed  CAS  Google Scholar 

  76. Murch SJ, Saxena PK (2006) St. John’ s wort (Hypericum perforatum L.): challenges and strategies for production of chemically consistent plants. Can J Plant Sci 86:765–771

    CAS  Google Scholar 

  77. Arnao MB, Hernández-Ruiz J (2009) Chemical stress by different agents affects the melatonin content of barley roots. J Pineal Res 46:295–299

    PubMed  CAS  Google Scholar 

  78. Lei X-Y, Zhu R-Y, Zhang G-Y, Dai Y-R (2004) Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res 36:126–131

    PubMed  CAS  Google Scholar 

  79. Li H, Murch SJ, Saxena PK (2001) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls and stem segments of Huang-qin. Plant Cell Tiss Organ Cult 62:169–173

    Google Scholar 

  80. Zobayed SMA, Saxena PK (2003) In vitro-grown roots: a superior explant for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv “New stem”) in a temporary immersion bioreactor. Plant Sci 165:463–470

    CAS  Google Scholar 

  81. Alan AR, Zeng H, Assani A, Shi WL, McRae HE, Murch SJ, Saxena PK (2007) Assessment of genetic stability of the germplasm lines of medicinal plant Scutellaria baicalensis Georgi (Huang-qin) in long-term, in vitro maintained cultures. Plant Cell Rep 26:1345–1355

    PubMed  CAS  Google Scholar 

  82. Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Organ Cult 81:287–300

    Google Scholar 

  83. Chakrabarty D, Hahn EJ, Yoon YJ, Paek KY (2003) Micropropagation of apple rootstock M.9 EMLA using bioreactor. J Hortic Sci Biotechnol 78:605–609

    CAS  Google Scholar 

  84. Paek K-Y, Murthy HN, Hahn E-J, Zhong J-J (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

    PubMed  CAS  Google Scholar 

  85. Zhe WR, Chakrabarty D, Hahn EJ, Paek KY (2007) Micropropagation of an endangered jewel orchid (Anoectochilus formosanus) using bioreactor system. Hortic Environ Biotechnol 48:376–380

    Google Scholar 

  86. Jones AMP, Saxena PK, Murch SJ (2009) Elicitation of secondary metabolism in Echinacea purpurea L. by gibberellic acid and triazoles. Eng Life Sci 9:205–210

    CAS  Google Scholar 

  87. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Murch SJ, Saxena PK (2002) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89:555–560

    PubMed  CAS  Google Scholar 

  89. Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Sugden D (1989) Melatonin biosynthesis in the mammalian pineal gland. Cell Mol Life Sci 45:922–932

    CAS  Google Scholar 

  91. Slominski A, Semak I, Pisarchik A, Sweatman T, Szczesniewski A, Wortsman J (2002) Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett 511:102–106

    PubMed  CAS  Google Scholar 

  92. Quay WB (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol 14:473–479

    PubMed  CAS  Google Scholar 

  93. Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS (2005) Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 24:433–456

    PubMed  CAS  Google Scholar 

  94. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43

    PubMed  CAS  Google Scholar 

  95. Arnao MB, Hernández-Ruiz J (2006) The physiological function of melatonin in plants. Plant Signal Behav 1:89–95

    PubMed  PubMed Central  Google Scholar 

  96. Kolář J, Macháčková I, Eder J, Prinsen E, van Dongen W, van Onckelen H, Illnerová H (1997) Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Photochemistry 44:1407–1413

    Google Scholar 

  97. Van Tassel DL, O’Neill SD (2001) Putative regulatory molecules in plants: evaluating melatonin. J Pineal Res 31:1–7

    PubMed  Google Scholar 

  98. Kolár J, Johnson C, Machácková I (2002) Presence and possible role of melatonin in a short-day flowering plant, Chenopodium rubrum. In: Melatonin after four decades, Kluwer Academic/Plenum, New York. pp 391–393

    Google Scholar 

  99. Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–536

    CAS  Google Scholar 

  100. Chen Q, Qi W, Reiter RJ, Wei W, Wang B (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    PubMed  CAS  Google Scholar 

  101. Arnao MB, Hernández‐Ruiz J (2006) Melatonin promotes adventitious‐and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    Google Scholar 

  102. Pelagio‐Flores R, Muñoz‐Parra E, Ortiz‐Castro R, López‐Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    PubMed  Google Scholar 

  103. Park S, Back K (2012) Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res 53:385–389

    PubMed  CAS  Google Scholar 

  104. Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunusavium × Prunuscerasus). Plant Physiol Biochem 61:162–168

    PubMed  CAS  Google Scholar 

  105. Lazár D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal Behav 8:e23279

    PubMed  PubMed Central  Google Scholar 

  106. Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2012) Long‐term exogenous application of melatonin delays drought‐induced leaf senescence in apple. J Pineal Res 54:292–302

    PubMed  Google Scholar 

  107. Park S, Lee D-E, Jang H, Byeon Y, Kim Y-S, Back K (2012) Melatonin‐rich transgenic rice plants exhibit resistance to herbicide‐induced oxidative stress. J Pineal Res 54:258–263

    PubMed  Google Scholar 

  108. Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity‐induced stress in Malus hupehensis. J Pineal Res 53:298–306

    PubMed  CAS  Google Scholar 

  109. Zhang N, Zhang H-J, Zhao B, Sun Q-Q, Cao Y-Y, Li R, Wu X-X, Weeda S, Li L, Ren S, Reiter RJ, Guo Y-D (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    PubMed  CAS  Google Scholar 

  110. Arnao MB, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63

    PubMed  CAS  Google Scholar 

  111. Arnao MB, Hernández-Ruiz J (2013) Growth conditions determine different melatonin levels in Lupinus albus L. J Pineal Res 55:149–155

    PubMed  CAS  Google Scholar 

  112. Kang K, Lee K, Park S, Kim YS, Back K (2010) Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. J Pineal Res 49:176–182

    PubMed  CAS  Google Scholar 

  113. Zhao Y, Qi L-W, Wang W-M, Saxena PK, Liu C-Z (2011) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50:83–88

    PubMed  CAS  Google Scholar 

  114. Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus Americana L.). J Pineal Res 55:435–442

    PubMed  CAS  Google Scholar 

  115. Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245

    PubMed  CAS  Google Scholar 

  116. Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phaceliatanacetifolia seeds by melatonin. J Pineal Res 52:332–339

    PubMed  CAS  Google Scholar 

  117. Zhang L, Jia J, Xu Y, Wang Y, Hao J, Li T (2011) Production of transgenic Nicotianasylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In Vitro Cell Dev Biol Plant 48:275–282

    Google Scholar 

  118. Byeon Y, Park S, Kim Y-S, Park D-H, Lee S, Back K (2012) Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. J Pineal Res 53:107–111

    PubMed  CAS  Google Scholar 

  119. Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54:426–434

    PubMed  CAS  Google Scholar 

  120. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664

    PubMed  CAS  Google Scholar 

  121. Van Tassel DL, Roberts N, Lewy A, O’Neill SD (2001) Melatonin in plant organs. J Pineal Res 31:8–15

    PubMed  Google Scholar 

  122. Kolar J, Johnson CH, Machackova I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiol Plant 118:605–612

    CAS  Google Scholar 

  123. Park S, Le T-NN, Byeon Y, Kim YS, Back K (2012) Transient induction of melatonin biosynthesis in rice (Oryza sativa L.) during the reproductive stage. J Pineal Res 55:40–45

    PubMed  Google Scholar 

  124. Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis in in vitro-cultured explants of st. John’s wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793

    CAS  Google Scholar 

  125. Hernández-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144

    PubMed  Google Scholar 

  126. Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    PubMed  CAS  Google Scholar 

  127. Op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Zhang N, Zhao B, Zhang H-J, Weeda S, Yang C, Yang Z-C, Ren S, Guo Y-D (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    PubMed  CAS  Google Scholar 

  129. Afreen F, Zobayed SMA, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV‐B radiation. J Pineal Res 41:108–115

    PubMed  CAS  Google Scholar 

  130. Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521–525

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Tan DX, Manchester LC, Reiter RJ, Plummer BF (1999) Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Biol Signals Recept 8:70–74

    PubMed  CAS  Google Scholar 

  132. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  133. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  134. Reiter R, Burkhardt S, Cabrera J, Garcia J (2002) Beneficial neurobiological effects of melatonin under conditions of increased oxidative stress. Curr Med Chem Nerv Syst Agents 2:45–58

    CAS  Google Scholar 

  135. Tan D, Hardeland R, Manchester LC, Poeggeler B, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ (2003) Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res 34:249–259

    PubMed  CAS  Google Scholar 

  136. Tan D-X, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 85:607–623

    PubMed  Google Scholar 

  137. Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E (2012) Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med 25:207–221

    PubMed  CAS  Google Scholar 

  138. Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278:55–67

    PubMed  CAS  Google Scholar 

  139. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin a content. Nat Biotechnol 23:482–487

    PubMed  CAS  Google Scholar 

  140. Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin a content of transgenic tomato plants. Nat Biotechnol 18:666–669

    PubMed  Google Scholar 

  141. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2:e350. doi:10.1371/journal.pone.0000350

    PubMed  PubMed Central  Google Scholar 

  142. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Díaz de la Garza RI, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci U S A 104:4218–4222

    PubMed  PubMed Central  Google Scholar 

  144. Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G-F, Lambert W, Van Der Straeten D (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25:1277–1279

    PubMed  CAS  Google Scholar 

  145. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    PubMed  CAS  Google Scholar 

  146. Zárate R, Verpoorte R (2007) Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 6:475–491

    Google Scholar 

  147. Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H (2009) Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N‐acetyltransferase and its use in the genetic engineering of melatonin content in the Micro‐Tom tomato. J Pineal Res 46:373–382

    PubMed  CAS  Google Scholar 

  148. Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q, Zuo B, Zheng XD, Li Q, Kong J (2013) Changes in melatonin levels in transgenic “Micro-Tom” tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56:134–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bajwa, V., Murch, S.J., Saxena, P.K. (2014). Melatonin Rich Plants: Production, Significance in Agriculture and Human Health. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_19

Download citation

Publish with us

Policies and ethics