Skip to main content

Quantitative Structure-Property Relationship Analysis of Drugs’ Pharmacokinetics Within the Framework of Biopharmaceutics Classification System Using Simplex Representation of Molecular Structure

  • Chapter
  • First Online:
Application of Computational Techniques in Pharmacy and Medicine

Abstract

The Biopharmaceutics Classification System (BCS) categorizes drugs into one of four biopharmaceutical classes according to their water solubility and membrane permeability characteristics and broadly allows the prediction of the rate-limiting step in the intestinal absorption process following oral administration. When combined with the in vitrodissolution characteristics of the drug product, the BCS takes into account three major factors: solubility, intestinal permeability, and dissolution rate, all of which govern the rate and extent of oral drug absorption from immediate-release (IR) solid oral-dosage forms. The concept of BCS provides a better understanding of the relationship between drug release from the product and the absorption process. This report reviews the current status of computational tools in predicting the base properties (aqueous solubility, and passive absorption) of the BCS and explores the application of the Simplex representation of molecular structure (SiRMS) QSAR approach in absorption (bioavailability) research. The main advantages of SiRMS are consideration of the different physico–chemical properties of atoms, high robustness, predictivity, and interpretability of developed models that creates good opportunities for molecular design. The reliability of developed QSAR models as predictive virtual screening tools and their utility for targeted drug design were validated by subsequent synthetic and biological experiments. The SiRMS approach was implemented as “HiT QSAR” software. In addition, we provide our perspective on the progress of research into an in silico equivalent to the BCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amidon GL, Lennernas H, Shah VP et al (1995) A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  Google Scholar 

  2. Golovenko NYa, Baula OP, Borisyuk IYu (2010) Biofarmatsevticheskaya klassifikatsionnaya sistema (The biopharmaceutics classification system). Kiev

    Google Scholar 

  3. Sachan NK (2009) Biopharmaceutical classification system: a strategic tool for oral drug delivery technology. Asian J Pharm 3:76–81

    Article  Google Scholar 

  4. Dressman J, Butler J, Hempenstall J et al (2001) The BCS: where do we go from here? Pharm Tech 25:68–76

    CAS  Google Scholar 

  5. Thiel-Demby VE, Humphreys JE, Williams LA et al (2009) Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol Pharm 6:11–18

    Article  CAS  Google Scholar 

  6. Kovacevic I, Parojcic J, Homsek I et al (2009) Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharm 6:40–47

    Article  CAS  Google Scholar 

  7. FDA, Draft guidance for industry: bioavailability and bioequivalence studies for orally administered drug products-general considerations, US Department of Health, Food and Drug Administration, Center for Drug Evaluation and Research BP, August 1999

    Google Scholar 

  8. Golovenko NYa (2004) Fiziko-khimicheskaya farmakologiya (Physico-Chemical Pharmacology). Astroprint, Odessa

    Google Scholar 

  9. van de Waterbeemd H (2003) Physico-chemical approaches to drug absorption. In: van de Waterbeemd H, Lennernas H, Artursson P (eds) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley-VCH, pp 3–20

    Google Scholar 

  10. Martinez M, Amidon GA (2002) Mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42:620–643

    Article  CAS  Google Scholar 

  11. Barthe L, Woodley J, Houin G (1999) Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol 13:154–168

    Article  CAS  Google Scholar 

  12. Hidalgo IJ, Li J (1996) Carrier-mediated transport and efflux mechanisms in Caco-2 cells. Adv Drug Deliv Rev 22:53–66

    Article  CAS  Google Scholar 

  13. Lobenberg R, Amidon GL (2000) Modern bioavailability, bioequivalence and biopharmaceutics classification system: new scientific approaches to international regulatory standards. Eur J Pharm Biopharm 50:3–12

    Article  CAS  Google Scholar 

  14. Emami J (2006) In vitro-in vivo correlation: from theory to applications. J Pharm Pharm Sci 9(2):31–51

    Google Scholar 

  15. Golovenko NYa, Borisyuk IYu (2008) The biopharmaceutical classification system-experimental model of prediction of drug bioavailability. Biochem Suppl Series B: Biomed Chem 2(3):235–244

    Article  Google Scholar 

  16. EMEA (1998) Note for guidance on the investigation of bioavailability and bioequivalence, (CPMP/EWP/QWP/1401/98), Committee for proprietary medicinal product

    Google Scholar 

  17. FDA, Draft guidance for industry: in vivo drug metabolism/drug interaction studies study design, data analysis, and recommendations for dosing and labeling, US Department of Health, Food and Drug Administration, Center for Drug Evaluation and Research Clin Pharm, November 1998

    Google Scholar 

  18. FDA, Draft guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms containing certain active moieties/active ingredient based on a biopharmaceutics classification system, US Department of Health, Food and Drug Administration, Center for Drug Evaluation and Research BP2, January 1999

    Google Scholar 

  19. Dressman JB, Amidon GL, Reppas C et al (1998) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15:11–22

    Article  CAS  Google Scholar 

  20. Meyer MC, Straughn AB, Jarvi EJ et al (1992) The bioinequivalence of carbamazepine tablets with a history of clinical failures. Pharm Res 9:1612–1616

    Article  CAS  Google Scholar 

  21. Stephen RJ, Zheng W (2006) Recent progress in the computational prediction of aqueous solubility and absorption. AAPS J 8(1):E27–E40

    Article  Google Scholar 

  22. Houa T, Wangb J, Zhangc W et al (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13:2653–2667

    Article  Google Scholar 

  23. Golovenko NYa, Borisyuk IYu, Kuz’min VE (2007) The dependence of “structure-property” in the models, predictive bioavailability of drugs. Farmacom 3:27–36

    Google Scholar 

  24. Raevskii OA, Kazachenko IV, Raevskaya OE (2004) The calculation of the bioavailability of drugs based on the similarity of the molecular structures. Chim-Farm Zhurn 38(10):3–8

    Google Scholar 

  25. Norinder U, Haeberlein M (2003) Calculated molecular properties and multivariate statistical analysis in absorption prediction. In: Drug bioavailability, methods and principles in medicinal chemstry, Van de Waterbeemd H, Lennern SH, Artursson P. (eds.), WILEY-VCH, Weinheim, 18:358–405

    Book  Google Scholar 

  26. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  Google Scholar 

  27. Veber DF, Johnson SR, Cheng H-Y et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  28. Lu JJ, Crimin K, Goodwin JT et al (2004) Influence of molecular flexibility and polar surface area metrics on oral bioavailability in rat. J Med Chem 47:6104–6107

    Article  CAS  Google Scholar 

  29. Hou T, Wang J, Zhang W et al (2007) ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J Chem Inf Model 47:460–463

    Article  CAS  Google Scholar 

  30. Hirono S, Nakagome I, Hirano H et al (1994) Non-congeneric structure–pharmacokinetic property correlation studies using fuzzy adaptive least-squares: oral bioavailability. Biol Pharm Bull 17:306–309

    Article  CAS  Google Scholar 

  31. Bains W, Gilbert R, Sviridenko L et al (2002) Evolutionary computational methods to predict oral bioavailability QSPRs. Curr Opin Drug Discov Devel 5(1):44–51

    CAS  Google Scholar 

  32. Zadeh LA (1977) Fuzzy sets and their applications to classification and clustering. In: Ryzin JV (ed) Classification and clustering. Academic, NY, pp 251–299

    Google Scholar 

  33. Wessel MD, Jurs PC, Tolan JW et al (1998) Prediction of human intestinal absorption of drug compounds from molecular structure. J Chem Inf Comput Sci 38:726–735

    Article  CAS  Google Scholar 

  34. Egan WJ, Merz JKM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877

    Article  CAS  Google Scholar 

  35. Zhao YH, Abraham MH, Le J et al (2003) Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur J Med Chem 38(3):233–243

    Article  CAS  Google Scholar 

  36. Yoshida F, Topliss JG (2000) QSAR model for drug human oral bioavailability. J Med Chem 43:2575–2585

    Article  CAS  Google Scholar 

  37. Andrews CW, Bennett L, Yu LX et al (2000) Predicting human oral bioavailability of a compound: development of a novel quantitative structure–bioavailability relationship. Pharm Res 17:639–644

    Article  CAS  Google Scholar 

  38. Navia MA, Chaturvedi PR (1996) Design principles for orally bioavailable drugs. Drug Discov Today 1:179–189

    Article  CAS  Google Scholar 

  39. Smith AB, Hirschmann R, Pasternak A et al (1997) An artificial antiparallel β-sheet containing a new peptidomimetic template. J Med Chem 40:2440–2444

    Article  CAS  Google Scholar 

  40. Palm K, Stenberg P, Luthman K et al (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571

    Article  CAS  Google Scholar 

  41. Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci 88:807–814

    Article  CAS  Google Scholar 

  42. Kuz’min VE, Artemenko AG, Polischuk PG et al (2005) Hierarchic system of QSAR models (1D–4D) on the base of simplex representation of molecular structure. J Mol Model 11:457–467

    Article  Google Scholar 

  43. Kuz’min VE, Artemenko AG, Lozitsky VP et al (2002) The analysis of structure–anticancer and antiviral activity relationships for macrocyclic pyridinophanes and their analogues on the basis of 4D QSAR models (simplex representation of molecular structure). Acta Biochim Pol 49:157–168

    Google Scholar 

  44. Lindgren F, Geladi P, Rannar S et al (1994) Interactive variable selection (IVS) for PLS. Part 1: theory and algorithms. J Chemom 8:349–363

    Article  Google Scholar 

  45. Rannar S, Lindgren F, Geladi P et al (1994) A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J Chemom 8:111–125

    Article  Google Scholar 

  46. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34(4):854–866

    Article  CAS  Google Scholar 

  47. Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure–activity studies. Definition and application. J Chem Inf Comput Sci 25:64–73

    Article  CAS  Google Scholar 

  48. Kuz’min VE, Artemenko AG, Muratov EN (2008) Hierarchical QSAR technology on the base of Simplex representation of molecular structure. J Comput Aided Mol Des 22:403–421

    Article  Google Scholar 

  49. Lindenberg M, Kopp S, Dressman JB (2004) Classification of orally administered drugs on the World Health Organization Model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm 58:265–278

    Article  Google Scholar 

  50. Kuz’min VE, Artemenko AG, Muratov EN et al (2010) Virtual screening and molecular design based on hierarchical QSAR technology. In: Puzyn T, Cronin M, Leszczynski J (eds) Recent advances in QSAR studies. Springer, London, pp. 127–176

    Google Scholar 

  51. Golbraikh A, Tropsha A (2002) Beware of Q2. J Mol Graph Model 20:269–276

    Article  CAS  Google Scholar 

  52. Seel M, Turner DB, Willett P (1999) Effect of parameter variations on the effectiveness of HQSAR analyses. Quant Struct-Activ Relat 18:245–252

    Article  CAS  Google Scholar 

  53. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  54. Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Wadsworth, Belmont, p 368

    Google Scholar 

  55. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random Forest: a classification and regression tool for compound classification and qsar modeling. J Chem Inf Comput Sci 43(6):1947–1958

    Article  Google Scholar 

  56. program CF, Polishchuk PG (2010–2013) http://qsar4u.com. Accessed 10 March 20112

    Google Scholar 

  57. Kuz’min VE, Artemenko AG, Lozitska RN et al (2005) Investigation of anticancer activity of macrocyclic Schiff bases by means of 4D-QSAR based on simplex representation of molecular structure. SAR QSAR Environ Res 16(3):219–230

    Article  Google Scholar 

  58. Kuz’min VE, Artemenko AG, Muratov EN et al (2007) Quantitative structure-activity relationship studies of [(biphenyloxy)propyl]isoxazole derivatives-human rhinovirus 2 replication inhibitors. J Med Chem 50:4205–4213

    Article  Google Scholar 

  59. Muratov EN, Varlamova EV, Artemenko AG et al (2011) QSAR analysis of[(biphenyloxy)propyl] isoxazoles: agents against coxsackievirus B3. Future Med Chem 3(1):15–27

    Article  CAS  Google Scholar 

  60. Muratov EN, Artemenko AG, Varlamova EV et al (2010) Per aspera ad astra: application of Simplex QSAR approach in antiviral research. Future Med Chem 2:1205–1226

    Article  CAS  Google Scholar 

  61. Kovdienko NA, Polischuk PG, Muratov EN et al (2010) Application of random forest and multiple linear regression technologues to QSPR prediction of an aqueous solubility for military compounds. Mol informatics 29:394–406

    Article  CAS  Google Scholar 

  62. Golovenko NYa, Kuz’min, Artemenko AG et al (2011) Prediction of bioavailability of drugs by the method of classification models. Clin Inform Telemed 8(7):88–92

    Google Scholar 

  63. Oh DM, Curl RL, Amidon GL (1993) Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res 10(2):264–270

    Article  CAS  Google Scholar 

  64. Winiwarter S, Ax F, Lennernas H et al (2003) Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability. J Mol Graph Model 21:273–287

    Article  CAS  Google Scholar 

  65. Kasim NA, Whitehouse M, Ramachandran C et al (2004) Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm 1:85–96

    Article  CAS  Google Scholar 

  66. Takagi T, Ramachandran C, Bermejo M et al (2006) A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm 3:631–643

    Article  CAS  Google Scholar 

  67. Proposal to waive in vivo bioequivalence requirements for the WHO model list of essential medicines immediate release, solid oral dosage forms. http://www.who.int/medicines/services/expertcommittees/pharmprep/QAS04_109Rev1_Waive_invivo_bioequiv.pdf.

  68. Uchimura N, Takeuchi N, Kuwahara U et al. (2002) Situation and problem of administration methods and the intermission of hypnotics. Psych Clin Neurosci 56(3):295–296

    Article  Google Scholar 

  69. Caccia S, Yaratini S (1985) Antiepileptic drug. Springer-Verlag, Berlin, pp 575–593

    Book  Google Scholar 

  70. Hallfors DD, Saxe L (1993) The dependence potential of short half-life benzodiazepines: a meta-analysis. Am J Public Health 83(9):1300–1304

    Article  CAS  Google Scholar 

  71. Dragon Software v. 3.0. Milano Chemometrics and QSAR Research Group. www.disat.unimib.it _chm. Accessed 5 May 20112

  72. Jolly WL, Perry WB (1973) Estimation of atomic charges by an electronegativity equalization procedure calibrated with core binding energies. J Am Chem Soc 95:5442–5450

    Article  CAS  Google Scholar 

  73. Wang R, Fu Y, Lai L (1997) A new atom-additive method for calculating partition coefficients J Chem Inf Comput Sci 37:615–621

    Article  CAS  Google Scholar 

  74. Rappe AK, Casewit CJ, Colwell KS et al (1992) UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  75. Hoskuldsson A (1988) PLS regression methods. J Chemometrics 2(3):211–228

    Article  Google Scholar 

  76. Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees, 1st edn. Wadsworth International Group, Belmont, pp 102–116

    Google Scholar 

  77. Hasegawa K, Miyashita Y, Funatsu K (1997) GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists J Chem Inf Comput Sci 37:306–310

    Article  CAS  Google Scholar 

  78. Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure activity studies definition and applications. J Chem Inf Comput Sci 25:64–73

    Article  CAS  Google Scholar 

  79. Perloff M, Von Moltke L, Court M et al (2000) Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution of CYP3A and CYP2C isoforms. Pharmacol Exper Ther 292(2):618–628

    CAS  Google Scholar 

  80. Golovenko NYa, Kravchenko IA (2007) Biochemicheskaya Pharmacologiya Prolekarstv (Biochemical Pharmacology of Prodrugs). Ekologiya, Odessa

    Google Scholar 

  81. Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  82. Zhang X, Lionberger RA, Davit BM et al (2011) Utility of physiologically based absorption modeling in implementing quality by design in drug development. AAPS J 13(1):59–71

    Article  Google Scholar 

  83. Mannhold R, Kubinyi H, Timmerman H (eds) (2000) Handbook of molecular descriptors In: Todeschini R, Consonni V (eds) Methods and principles in medicinal chemistry, vol. 11. Wiley-VCH, Weinheim

    Google Scholar 

  84. Tubic-Grozdanis M, Bolger MB, Langguth P (2008) Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds. AAPS J 10(1): 213–226

    Article  CAS  Google Scholar 

  85. Fujioka Y, Kadono K, Fujie Y et al (2007) Prediction of oral absorption of griseofulvin, a BCS class II drug, ased on GITA model: utilization of a more suitable edium for in vitro dissolution study. J Control Release 119:222–228

    Article  CAS  Google Scholar 

  86. Norris DA, Leesman GD, Sinko PJ et al (2000) Development of predictive pharmacokinetic simulation models for drug discovery. J Control Release 65:55–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ya. Golovenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Golovenko, N., Borisyuk, I., Kulinskiy, М., Polishchuk, P., Мuratov, E., Kuz’min, V. (2014). Quantitative Structure-Property Relationship Analysis of Drugs’ Pharmacokinetics Within the Framework of Biopharmaceutics Classification System Using Simplex Representation of Molecular Structure. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_14

Download citation

Publish with us

Policies and ethics