Skip to main content

Auxin Signaling System in Plant Innate Immunity

  • Chapter
  • First Online:
Plant Hormone Signaling Systems in Plant Innate Immunity

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 2))

Abstract

Plant hormones play important role in plant immune signaling system. While salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are integral components of signal transduction systems involved in activation of plant innate immunity, auxin is involved in the modulation of various plant defense signaling pathways. Indole-3-acetic acid (IAA) is the naturally occurring auxin in plants. IAA is synthesized from tryptophan via multiple pathways including indole-3-pyruvic acid (IPA), indole-3-acetamide (IAM), tryptamine (TAM), and indole-3-acetonitrile (IAN) pathways. TIR1/AFB proteins, which are F-box subunits of the SCF ubiquitin complex, have been identified as the receptors for auxins. AUX/IAA proteins are nuclear proteins, and the only function of the AUX/IAA proteins is to repress transcription of auxin-regulated genes. Auxin response factor (ARF) proteins are the transcription factors that bind to the cis-element in auxin-responsive promoters and trigger the expression of auxin-responsive genes. The AUX/IAA protein forms a heterodimer with ARF and represses the transcriptional regulatory function of ARFs. Auxin promotes the degradation of the AUX/IAA repressor through ubiquitin–proteasome pathway and consequently activates auxin-responsive gene expression by removing the inhibition of ARF activity. The auxin receptor TIR1 F-box protein directly links auxin perception to degradation of the AUX/IAA proteins, resulting in depression/activation of auxin response genes. Auxin rapidly alters the expression of hundreds of genes within minutes by removing the inhibitory function of AUX/IAA proteins. Auxin modulates SA, JA, ET, abscisic acid (ABA), and cytokinin signaling systems in the induction or suppression of plant immune responses. Interplay between auxin signaling system and G-protein-, mitogen-activated protein kinase (MAPK)-, reactive oxygen species (ROS), nitric oxide (NO)-, ion channels, and small RNA-mediated signaling systems has been reported. Auxin negatively or positively regulates plant defense responses, resulting in disease susceptibility or disease resistance. Several plant pathogens are known to modulate plant auxin signaling system to cause disease. Auxin, auxin response factors, auxin-responsive genes have been shown to modulate plant defense responses. Every event in auxin signaling and metabolism, including auxin biosynthesis, auxin perception, auxin conjugation, auxin transport, signaling derepression, and inactivation, has been correlated with plant defense or plant disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abas L, Benjamins R, Malencia N, Paciorek T, Wirniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256

    PubMed  CAS  Google Scholar 

  • Abel S, Theologis A (1995) A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum). Plant J 8:87–96

    PubMed  CAS  Google Scholar 

  • Ahmad S, Gordon-Weeks R, Pickett J, Ton J (2010) Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Mol Plant Pathol 11:817–827

    PubMed  Google Scholar 

  • Astier J, Lindermeyr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13:15193–151208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aziz A, Heyraud A, Lambert B (2004) Oligogalacturonide signal transduction, induction of defence-related responses and protection of grapevine against Botrytis cinerea. Planta 218:767–774

    PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    PubMed  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Beard RA, Anderson DJ, Bufford JL, Tallman G (2012) Heat reduces nitric oxide production required for auxin-mediated gene expression and fate determination in tree tobacco guard cell protoplasts. Plant Physiol 159:1608–1623

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact 26:271–277

    PubMed  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    PubMed  CAS  Google Scholar 

  • Bertoni G (2012) Oxylipins and plant palatability. Plant Cell 24:1305

    CAS  PubMed Central  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    PubMed  CAS  Google Scholar 

  • Book AJ, Yang P, Scalf M, Smith LM, Viersta RD (2005) Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis. Plant Physiol 138:1046–1057

    PubMed  CAS  PubMed Central  Google Scholar 

  • Branca C, De Lorenzo G, Cervone F (1988) Competitive inhibition of the auxin-induced elongation of by α-D-oligogalacturonides in pea stem segments. Physiol Plant 72:499–504

    CAS  Google Scholar 

  • Brumos A, Alonso JM, Stepanova AN (2013) Genetic aspects of auxin biosynthesis and its regulation. Physiol Plant. doi:10.1111/ppl.12098

    PubMed  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caffali KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Google Scholar 

  • Calderon-Villalobos LI, Tan X, Zheng N, Estelle M (2010) Auxin perception – structural insights. Cold Spring Harb Perspect Biol 2010:a005546

    Google Scholar 

  • Camañes G, Pastor V, Cerezo M, Garcia-Andrade J, Vicedo B, Garcia-Agustin P, Flors V (2012) A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses. Plant Physiol 158:1054–1066

    PubMed  PubMed Central  Google Scholar 

  • Carrier DJ, Bakar NT, Swarup R, Callaghan R, Napier RM, Bennett MJ, Kerr ID (2008) The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Plant Physiol 148:529–535

    PubMed  CAS  PubMed Central  Google Scholar 

  • Casasoli M, Federici L, Spinelli F, Di Matteo A, Vella N, Scaloni F, Fernandez-Recio J, Cervone F, De Lorenzo G (2009) Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein. Proc Natl Acad Sci U S A 106:7666–7671

    PubMed  CAS  PubMed Central  Google Scholar 

  • Celenza JL, Quirl JA, Smolen GA, Merrikh H, Silvestro AR, NormanlyJ Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cernadas RA, Benedetti CE (2009) Roles of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci 177:190–195

    CAS  Google Scholar 

  • Chanda B, Xia Y, Mandal MK, Yu K, Sekine K-T, Gao Q-M, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427

    PubMed  CAS  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    CAS  Google Scholar 

  • Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117

    PubMed  CAS  Google Scholar 

  • Chellappan P, Zhang X, Jin H (2009) Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol 12:465–472

    Google Scholar 

  • Chen Z, Agnew JL, Cohen JD, He P, Shan I, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 104:20131–20136

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen QF, Westfall CS, Hicks LM, Wang SP, Jez JM (2010) Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J Biol Chem 285:29780–29786

    CAS  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choi J, Park S-Y, Kim B-R, Roh J-H, Oh IS, Han SS, Lee YH (2013) Comparative analyses of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLoS One 8(20):e57196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chun HJ, Park HC, Koo SC, Lee JH, Park CY, Choi MS, Kang CH, Baek D, Cheong YH, Yun DJ, Chung WS, Cho MJ, Kim MC (2012) Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol Cells 34:463–471

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chung KR, Shilts T, Erturk U, Timmer LW, Ueng PP (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 70:1852–1854

    Google Scholar 

  • Ciomperlik J, Omarov RT, Scholthof HB (2011) An antiviral RISC isolated from Tobacco rattle virus-infected plants. Virology 412:117–124

    CAS  PubMed Central  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    PubMed  CAS  Google Scholar 

  • Cui F, Wu S, Sun W, Coaker G, Kunkel B, He P, Shan L (2013) The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol 162:1018–1029

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cuzick A, Maguire K, Hammond-Kosack KE (2009) Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers. New Phytol 181:901–912

    PubMed  CAS  Google Scholar 

  • Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, DuBois J, Ballou D, Zhao Y (2013) The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288:1448–1457

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11:365–382

    CAS  PubMed Central  Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    PubMed  Google Scholar 

  • de Torres-Zabala M, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defense responses. Plant J 59:375–386

    PubMed  Google Scholar 

  • del Pozo JC, Timpte C, Tan S, Callis J, Estelle M (1998) The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280:1760–1763

    PubMed  CAS  Google Scholar 

  • del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14:421–433

    PubMed  PubMed Central  Google Scholar 

  • Delker C, Zolman BK, Miersch O, Wasternack C (2007) Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal β-oxidation enzymes – Additional proof by properties of pex6 and aim1. Phytochemistry 68:1542–1650

    Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:Article 155. pp 1–12

    Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    CAS  PubMed Central  Google Scholar 

  • Deshaies RJ (1999) SCF and cullin/ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    CAS  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signaling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466

    PubMed  CAS  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58:497–513

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    PubMed  CAS  Google Scholar 

  • Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220

    PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    PubMed  CAS  PubMed Central  Google Scholar 

  • Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact 22:201–210

    PubMed  CAS  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f.sp. vasinfectum. Mol Plant Microbe Interact 17:654–667

    PubMed  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreher KA, Brown J, Saw RF, Callis J (2006) The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18:699–714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  • El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daay F, Vojnov A, Bouarab K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421

    PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ferrari S, Galletti R, Pontiggia D, Manfredni D, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistance to a bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Friml J (2003) Auxin transport –shaping the plant. Curr Opin Plant Biol 6:7–12

    PubMed  CAS  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport – old questions and new concepts? Plant Mol Biol 49:273–284

    PubMed  CAS  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Frontiers Plant Sci 2:Article 74. p 7

    Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galletti R, De Lorenzo G, Ferrari S (2009) Host-derived signals activate plant innate immunity. Plant Signal Behav 4:33–34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H (2010) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–178

    PubMed  CAS  Google Scholar 

  • Geisler M, Blakeslee J, Bouchard R, Lee O, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    CAS  Google Scholar 

  • Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 3(109):cm4

    PubMed  Google Scholar 

  • Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997

    CAS  PubMed Central  Google Scholar 

  • Glickmann E, Garden L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 11:156–162

    PubMed  CAS  Google Scholar 

  • González-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24:762–777

    PubMed  PubMed Central  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (Dis)harmony moulds plant health and disease. Science 324:750–752

    PubMed  CAS  Google Scholar 

  • Gray WM, Estelle M (2000) Function of the ubiquitin-proteasome pathway in auxin-response. Trends Biochem Sci 25:133–138

    PubMed  CAS  Google Scholar 

  • Gray WM, Muskett PR, Chuang HW, Parker JE (2003) Arabidopsis SGT1b is required for SCFTIR1-mediated auxin response. Plant Cell 15:1310–1319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M (2011) The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr Biol 21:520–525

    PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    PubMed  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    PubMed  CAS  Google Scholar 

  • Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi K-I (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53:965–975

    PubMed  CAS  Google Scholar 

  • Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci U S A 105:5632–5637

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1 an ortholog of Arabidopsis elicitor peptide 1 regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338

    CAS  PubMed Central  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kárenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55:1862–1870

    CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHAO. Mol Plant Microbe Interact 16:851–858

    PubMed  CAS  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    PubMed  CAS  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci U S A 96:13583–13588

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    PubMed  CAS  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    PubMed  CAS  Google Scholar 

  • Kepinski S (2007) The anatomy of auxin perception. Bioessays 29:953–956

    PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    PubMed  CAS  Google Scholar 

  • Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, Aitken EA, Schenk PM, Manners JM, Kazan K (2011) Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant Microbe Interact 24:733–748

    PubMed  CAS  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    CAS  PubMed Central  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358–1368

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated-mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 2940–2945

    Google Scholar 

  • Kulcheski F, de Oliveira LFV, Molina LG, Almeräo MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaräes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GAG, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    PubMed  CAS  PubMed Central  Google Scholar 

  • LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452

    PubMed  CAS  Google Scholar 

  • Lee C-W, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Mṻller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156:2011–2025

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leguay JJ, Jouanneau JP (1987) Auxin (2,4-dichlorophenoxyacetic acid) starvation and treatment with glucan elicitor isolated from Phytophthora megasperma induces similar responses in soybean-cultured cell suspensions. Dev Genet 8:351–364

    CAS  Google Scholar 

  • Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 89:895–905

    PubMed  CAS  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433

    PubMed  CAS  Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou J-M (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li H, Tiwari SB, Hagen G, Guilfoyle TJ (2011) Identical amino acid substitutions in the repression domain of auxin/indole-3-acetic acid proteins have contrasting effects on auxin signaling. Plant Physiol 155:1252–1263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8(6):e1002767. doi:10.1371/journal.pgen.1002767

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429

    PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    PubMed  CAS  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    PubMed  CAS  Google Scholar 

  • Liu P-P, von Dahl CC, Klessig DF (2011a) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011b) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768

    PubMed  CAS  PubMed Central  Google Scholar 

  • Llorente E, Muskett P, Sáuchez Vallet A, Lopez G, Ramos B, Sánchez Rodriguez C, Jordá L, Parker J, Molina A (2008) Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 1:496–509

    PubMed  CAS  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next generation systemic acquired resistance. Plant Physiol 158:844–853

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mah KM, Uppalapati SR, Tang Y, Allen S, Shuai B (2012) Gene expression profiling of Macrophomina phaseolina infected Medicago truncatula roots reveals a role for auxin in plant tolerance against the charcoal rot pathogen. Physiol Mol Plant Pathol 79:21–30

    CAS  Google Scholar 

  • Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    PubMed  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR7 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98:196–204

    PubMed  CAS  Google Scholar 

  • Manosalva PM, Park S-W, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl Esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant Microbe Interact 23:1151–1163

    PubMed  CAS  Google Scholar 

  • Maor R, Haskin S, Levi-Kadmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:1852–1854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maraschin Fdos S, Memelink J, Offringa R (2009) Auxin induced SCFTIR1-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109

    PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K-I, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:18512–18517

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mateo A, Muhlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    PubMed  CAS  PubMed Central  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardόczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485–495

    PubMed  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    PubMed  CAS  Google Scholar 

  • Molnár A, Melnyk C, Baulcombe DC (2011) Silencing signals in plants: a long journey for small RNAs. Genome Biol 12:215

    PubMed  PubMed Central  Google Scholar 

  • Moscatiello R, Mariani P, Sanders D, Maathuis FJ (2006) Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J Exp Bot 57:2847–2865

    PubMed  CAS  Google Scholar 

  • Mosher RA, Lewsey MG, Shivaprasad PV (2010) RNA silencing in plants: flash report. Silence 1:13

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant Microbe Interact 23:340–351

    PubMed  CAS  Google Scholar 

  • Muto H, Nagao I, Demura T, Fukuda H, Kinjo M, Yamamoto KT (2006) Fluorescence cross-correlation analyses of the molecular interaction between an Aux/protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of Arabidopsis expressed in HeLa cells. Plant Cell Physiol 47:1095–1101

    PubMed  CAS  Google Scholar 

  • Muto H, Watahiki MK, Nakamoto D, Kinjo M, Yamamoto KT (2007) Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA 141. Plant Physiol 144:187–196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle LS, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4718

    PubMed  CAS  Google Scholar 

  • Naseem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8(11):e1003026. doi:10.1371/journal ppat 1003026

    PubMed  CAS  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dhamasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    PubMed  CAS  PubMed Central  Google Scholar 

  • O’Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ (2003) Susceptible to intolerance – a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33:245–257

    PubMed  Google Scholar 

  • Okrent RA, Brooks MD, Wildermuth MC (2009) Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J Biol Chem 284:9742–9754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    PubMed  CAS  PubMed Central  Google Scholar 

  • Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN (2005) Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79:2549–2558

    PubMed  CAS  PubMed Central  Google Scholar 

  • Padmanabhan MS, Shiferaw H, Culver JN (2006) The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 19:864–873

    PubMed  CAS  Google Scholar 

  • Padmanabhan MS, Kramer SR, Wang X, Culver JN (2008) Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 82:2477–2485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park WJ, Kriechbaumer V, Müller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2003) The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol 133:794–802

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    PubMed  CAS  Google Scholar 

  • Park SW, Liu PP, Forouhar F, Vlot AC, Tong L, Tietjen K, Klessig DF (2009) Use of synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem 284:7307–7317

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A 106:22540–22545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signaling. J Exp Bot 64:2629–2639

    PubMed  CAS  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Riviére N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microbe Interact 23:846–860

    PubMed  CAS  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2175–2688

    Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    PubMed  CAS  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Does D, Verhage A, Koornneef A, van Pelt JA, van Wees SCM (2012) Networking by small-molecule hormones in plant immunity. Induced resistance against insects and diseases. IOBC-WPRS Bull 83:77–80

    Google Scholar 

  • Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase I from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564

    PubMed  CAS  Google Scholar 

  • Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62:293–300

    PubMed  CAS  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105

    PubMed  CAS  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rademacher EH, Moller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D (2011) A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68:597–606

    PubMed  CAS  Google Scholar 

  • Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci 13:368–374

    PubMed  CAS  PubMed Central  Google Scholar 

  • Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification of the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JDG (2011) The microRNA mi393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67:218–231

    PubMed  CAS  Google Scholar 

  • Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (l.) Heynh. Planta 222:98–106

    PubMed  CAS  Google Scholar 

  • Rustérucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    PubMed  PubMed Central  Google Scholar 

  • Rustérucci C, Espunya MC, Diaz M, Chabannes M, Martinez MC (2007) S-Nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    PubMed  PubMed Central  Google Scholar 

  • Rủžіčka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth effects on auxin biosynthesis and transport dependent auxin distribution. Plant Cell 19:2197–2212

    Google Scholar 

  • Ryan CA, Huffaker A, Yamaguchi Y (2007) New insights into innate immunity in Arabidopsis. Cell Microbiol 9:1902–1908

    PubMed  CAS  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    PubMed  CAS  Google Scholar 

  • Savatin DV, Ferrari S, Sicilia E, De Lorenzo G (2011) Oligogalacturonide auxin antagonism does not require post-transcriptional gene silencing or stabilization of auxin response repressors in Arabidopsis thaliana. Plant Physiol 157:1163–1174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schmelz EA, Engelberth J, Turulinson JH, Block A, Alborn HT (2004) The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J 39:790–808

    PubMed  CAS  Google Scholar 

  • Sequeira L (1965) Origin of indoleacetic acid in plants infected by Pseudomonas solanacearum. Phytopathology 55:1232–1236

    CAS  Google Scholar 

  • Sequeira L, Kelman A (1962) The accumulation of growth substances in plants infected by Pseudomonas solanacearum. Phytopathology 52:439–448

    CAS  Google Scholar 

  • Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464

    PubMed  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    PubMed  CAS  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321

    PubMed  CAS  PubMed Central  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    PubMed  CAS  PubMed Central  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    PubMed  CAS  PubMed Central  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene –insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, DoleZal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    PubMed  CAS  Google Scholar 

  • Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N, Mueller MJ, Kamiya Y (2011) Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. Plant Cell Physiol 52:1941–1956

    PubMed  CAS  Google Scholar 

  • Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol 4:337–339

    PubMed  CAS  Google Scholar 

  • Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64:874–884

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 106:5430–5435

    PubMed  CAS  PubMed Central  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    PubMed  CAS  PubMed Central  Google Scholar 

  • Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083

    PubMed  CAS  PubMed Central  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    PubMed  CAS  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    PubMed  CAS  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    PubMed  CAS  Google Scholar 

  • Takahashi K, Hayashi K-I, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–641

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng M (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    PubMed  CAS  Google Scholar 

  • Tanaka E, Koga H, Mori M, Masashi M (2011) Auxin production by the rice blast fungus and its localization in host tissue. J Phytopathol 159:522–530

    CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong FX, Long JA, Li L, Moreno JF, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, Hayashi K-I, Hayama H, Yoshioka H, Nakamura Y (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot 64:1049–1059

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tegg RS, Gill WM, Thompson HK, Davies NW, Ross JJ, Wilson CR (2008) Auxin-induced resistance to common scab disease of potato linked to inhibition of thaxtomin A toxicity. Plant Dis 92:1321–1328

    CAS  Google Scholar 

  • Terrile MC, Paris R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492–500

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939

    PubMed  CAS  Google Scholar 

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53

    PubMed  CAS  Google Scholar 

  • Timpte C (2001) Auxin binding protein: curiousor and curiouser. Trends Plant Sci 6:586–590

    PubMed  CAS  Google Scholar 

  • Tiryaki I, Staswick PE (2002) An Arabidopsis mutant defective in jasmonate response is allelic to the auxin signaling mutant axr1. Plant Physiol 130:887–894

    PubMed  CAS  PubMed Central  Google Scholar 

  • Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tör M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14:993–1003

    PubMed  PubMed Central  Google Scholar 

  • Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme K, Ljung K, Lee K, Lee J-Y, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C (2009) The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS One 4:e6648

    PubMed  PubMed Central  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci U S A 104:1075–1080

    CAS  PubMed Central  Google Scholar 

  • Truman WM, Bennett MH, Turnbull CGN, Grant MR (2010) Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. Plant Physiol 152:1562–1573

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    PubMed  CAS  Google Scholar 

  • Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M (2009) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 57:463–472

    PubMed  CAS  Google Scholar 

  • Uppalapati SR, Ishiga Y, Ryu CM, Ishiga T, Wang K, Noel LD, Parker JE, Mysore KS (2011) SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. New Phytol 189:83–93

    PubMed  CAS  Google Scholar 

  • Van der Does D, Zamioudis C, Leon-reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    PubMed  Google Scholar 

  • Vandeputte O, Oden S, Mol A, Vereecke D, Goethals K, El Jaziri M, Prinsen E (2005) Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, IIth edn. CRC Press, Taylor Francis Group, Boca Raton, p 510

    Google Scholar 

  • Vorwerk S, Biemacki S, Hillebrand H, Janzik I, Müller A, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NI2/NIT1/NIT3-gene cluster. Planta 212:508–516

    PubMed  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    PubMed  CAS  Google Scholar 

  • Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu L-J, Gu H (2008) Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep 27:125–135

    PubMed  CAS  Google Scholar 

  • Wang J, Liu C-Y, Zhang L-W, Wang J-L, Hu G-H, Ding J-J, Chen Q-S (2011) MicroRNAs involved in the pathogenesis of Phytophthora root rot of soybean (Glycine max). Agric Sci China 10:1150–1167

    Google Scholar 

  • Wen N, Chu Z, Wang S (2003) Three types of defense-responsible genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339

    PubMed  CAS  Google Scholar 

  • Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM (2010) Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav 61:752–766

    Google Scholar 

  • Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012) Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336:1708–1711

    PubMed  CAS  Google Scholar 

  • Won C, Shen XL, Mashiguchi K, Zheng ZY, Dai XH, Cheng YF, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A 108:18518–18523

    PubMed  CAS  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    CAS  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    PubMed  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    PubMed  CAS  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nam F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang S, Zhang Q, Guo J, Charkowski A, Glick BR, Ibekwe AM, Cooksey DA, Yang CH (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088

    CAS  PubMed Central  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu Y-B, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiol 64:1074–1077

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu H, Karampelias M, Robert S, Peer WA, Swarup R, Ye S, Ge L, Cohen J, Murphy A, Friml J, Estelle M (2013) ROOT ULTRAVIOLET B-SENSITIVE1/WEAK AUXIN RESPONSE3 is essential for polar auxin transport in Arabidopsis. Plant Physiol 162:965–976

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T (2013) Genome-wide analysis of the GH3 family in apple (Malus X domestica). BMC Genomics 14:297

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145:450–464

    CAS  PubMed Central  Google Scholar 

  • Zhang H, Li D, Wang M, Liu J, Teng W, Cheng B, Huang Q, Wang M, Song W, Dong S, Zheng X, Zhang Z (2012) The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1Mo-triggered plant responses. Mol Plant Microbe Interact 25:1639–1653

    PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    CAS  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Yu Y, Zhai J, Ramachandran V, Dinh TT, Meyers BC, Mo B, Chen X (2012a) The Arabidopsis nucleotidyltransferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr Biol 22:689–694

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Y-T, Wang M, Fu S-X, Yang W-C, Qi C-K, Wang X-J (2012b) Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes. Plant Physiol 158:813–823

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng X-y, Spivey NW, Zeng W, Liu P-P, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA (2005) Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res 307:436–451

    PubMed  CAS  Google Scholar 

  • Ziadi S, Barbedette S, Godard JF, Monot C, Le Corre D, Silue D (2008) Production of pathogenesis-related proteins in the cauliflower (Brassica oleracea var botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl. Plant Pathol 50:579–586

    Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2015). Auxin Signaling System in Plant Innate Immunity. In: Plant Hormone Signaling Systems in Plant Innate Immunity. Signaling and Communication in Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9285-1_6

Download citation

Publish with us

Policies and ethics