Skip to main content
  • 1083 Accesses

Abstract

The functional role of keystone species is considered by way of examples. The focus is on termites, beavers, and kangaroo rats.

While many animal species are acting as ‘ecosystem engineers’, the term ‘keystone species’ in its proper sense should be restricted to cases where ecosystem stability, structure, function and dynamics are determined by only one species. In so doing, numbers of ‘keystone species’ will be considerably reduced. The decline or extinction of a keystone species will be followed by fundamental changes of its habitat and biocoenosis. Related animal species influencing their habitats in a combined action (e.g.; kangaroo rats) have been called a ‘keystone species guild’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadie, L., & Lepage, M. (1989). The role of subterranean fungus comb chambers (Isoptera, Macroterminae) in soil nitrogen cycling in a preforest savanna (Côte d’Ivoire). Soil Biology and Biochemistry, 21(8), 1067–1071.

    CAS  Google Scholar 

  • Anderson, C. B., Soto, N., Cabello, J. L., Pastur, G. M., Lencinas, M. V., Wallem, P. K., Atúnez, D., & Davis, E. (2012). Castor canadensis Kuhl (North American Beaver). Building effective alliances between research and management to mitigate the impacts of an invasive ecosystem engineer: Lessons from the study and control of Castor canadensis in the Fuegian Archipelago. In R. A. Francis (Ed.), A handbook of global freshwater invasive species (pp. 343–355). London: Earthscan.

    Google Scholar 

  • Arner, D. H., & Hepp, G. R. (1989). Beaver pond wetland: A southern perspective. In L. M. Smith, R. L. Pederson, & R. M. Kaminski (Eds.), Habitat management for migrating and winter waterfowl in North America (pp. 117–128). Lubbock: Texas Technical University Press.

    Google Scholar 

  • Arner, D. H., Baker, D. W., & Herring, B. (1969). An inventory and study of beaver impounded water in Mississippi. In Proceedings 23. Annual conference of the Southeastern Association of Game and Fish Commissioners (pp. 110–128).

    Google Scholar 

  • Arshad, M. A. (1982). Influence of the termite Macrotermes michaelseni (Sjöst) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems, 8, 47–58.

    Google Scholar 

  • Baker, B. W., & Hill, E. P. (2003). Beaver (Castor canadensis). In G. A. Feldhamer, B. C. Thompson, & J. A. Chapman (Eds.), Wild mammals of North America: Biology, management, and conservation (2nd ed., pp. 288–310). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Barnes, W. J., & Dibble, E. (1988). The effect of beaver in riverbank forest succession. Canadian Journal of Botany, 66, 40–44.

    Google Scholar 

  • Baskin, L. M. (2011). Predators as determinants of beaver alertness and shelter-making behavior. In G. Sjöberg & J. P. Ball (Eds.), Restoring the European beaver: 50 years of experience (pp. 271–280). Sofia/Moscow: Pensoft.

    Google Scholar 

  • Beard, E. (1953). The importance of beaver in waterfowl management at the Seney National Wildlife Refuge. Journal of Wildlife Management, 17, 392–436.

    Google Scholar 

  • Becker, T. (2001). Die Feenkresie des Kaokolandes. Naturwissenschaftliche Rundschau, 54(8), 430–431.

    Google Scholar 

  • Becker, T., & Getzin, S. (2000). The fairy circles of Kaokoland (North-West Namibia) – Origin, distribution, and characteristics. Basic and Applied Ecology, 1, 149–159.

    Google Scholar 

  • Beier, P., & Barret, R. H. (1987). Beaver habitat use and impact in Truckee River Basin, California. Journal of Wildlife Management, 51, 794–799.

    Google Scholar 

  • Bennett, A. F. (1999). Linkages in the landscape. The role of corridors and connectivity in wildlife conservation. Gland/Switzerland/Cambridge, UK: IUCN.

    Google Scholar 

  • Bergstrom, D. (1985, October). Beaver: Biologists ‘rediscover’ a natural resource. USDA Forest Service, Forestry Research West (pp. 1–5). Fort Collins: Colorado.

    Google Scholar 

  • Bishoa Menea, K., & Boloy, N. (1995). Termitary soil and died peanut straw as market-garden fertilisers in Yangambi (Zaire). Cahiers Agricultures, 4(2), 125–128.

    Google Scholar 

  • Black, H. I. J., & Okwakol, M. J. N. (1997). Agricultural intensification, soil biodiversity and agrosystem function in the tropics: The role of termites. Applied Soil Ecology, 6, 37–53.

    Google Scholar 

  • Boyer, P. (1975). Etude particulère des trois termitières de Bellicosithermes et leur action sur les sols tropicaux. Annales des Sciences Naturelles, Zoologie, 17, 273–496.

    Google Scholar 

  • Brown, L. (1972). The life of African plains. New York: McGraw-Hill.

    Google Scholar 

  • Brown, J. H., & Heske, E. J. (1990). Control of a desert-grassland transition by a keystone rodent guild. Science, 250, 1705–1707.

    CAS  Google Scholar 

  • Bulluck, J. F., & Rowe, M. P. (2013). The use of southern Appalachian wetlands by breeding birds, with a focus on neotropical migratory birds. The Wilson Journal of Ornithology, 118(3), 399–410.

    Google Scholar 

  • Butler, D. R. (1995). Zoogeomorphology: Animals as geomorphic agents (2nd ed., 2008). Cambridge: Cambridge University Press.

    Google Scholar 

  • Butler, D. R. (2012). Characteristics of beaver ponds on deltas in a mountain environment. Earth Surface Processes and Landforms, Special Issue on Geomorphology and Ecosystems, accepted for publication. doi:10.1002/esp.3218.

  • Butler, J. H. A., & Buckerfield, J. C. (1979). Digestion of ligin by termites. Soil Biology and Biochemistry, 11, 507–513.

    CAS  Google Scholar 

  • Butler, D. R., & Malanson, G. P. (1994). Canadian landform examples. Beaver landforms. Canadian Geographer, 38, 76–79.

    Google Scholar 

  • Buxton, R. D. (1981). Termites and the turnover of dead wood in an arid tropical environment. Oecologia, 9, 379–384.

    Google Scholar 

  • Coaton, W. G. H. (1958). The homotermid harvester termites of South Africa (Science Bulletin 375). Union of South Africa, Department of Agriculture, Division of Entomology, Pretoria.

    Google Scholar 

  • Coaton, W. G. H. (1962). The origin and development of massive vegetated termite hills in Northern Rhodesia. African Wildlife, 16, 159–166.

    Google Scholar 

  • Coaton, W. G. H., & Sheasby, J. L. (1972). Preliminary report on a survey of the termites (Isoptera) of South West Africa. Cimbebasia Memoir, 2, 1–129.

    Google Scholar 

  • Collen, P., & Gibson, R. J. (2001). The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and the subsequent effects on fish – A review. Reviews in Fish Biology and Fisheries, 10, 439–461.

    Google Scholar 

  • Collins, N. M. (1977). The population ecology and energetics of Macrotermes bellicosus (Smeathman) Isoptera. Dissertation, London.

    Google Scholar 

  • Collins, N. M. (1981a). The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia, 51, 389–399.

    Google Scholar 

  • Collins, N. M. (1981b). The utilization of nitrogen resources by termites (Isoptera). In J. A. Lee, S. McNeill, & I. H. Rorison (Eds.), Nitrogen as an ecological factor (pp. 381–412). Oxford: Blackwell.

    Google Scholar 

  • Cooke, H. A., & Zack, S. (2008). Influence of beaver dam density on riparian areas and riparian birds in shrubsteppe of Wyoming. Western North American Naturalist, 68(3), 365–373.

    Google Scholar 

  • Cosar, H. G. (1934). Die Termiten in der afrikanischen Landschaft. Beiheft, Mitteilungen der Geographischen Gesellschaft Rostock 2. Rostock: Verlag Leopold.

    Google Scholar 

  • Cox, W. T. (1940). The beaver – Friend of the forest. American Forests 46, 448–540 and 476–477.

    Google Scholar 

  • Crome, F. J. H., & Bentruppenbaumer, J. (1993). Special people, a special animal and a special vision: The first step to restoring a fragmented tropical landscape. In D. A. Saunders, R. J. Hobbs, & P. R. Ehrlich (Eds.), Nature conservation 3. The reconstruction of ecosystems (pp. 267–279). Chipping Norton: Surrey Beatty & Sons Pty Ltd.

    Google Scholar 

  • Darlington, J. P. E. (1982). The underground passages and storage pits in foraging a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. Journal of Zoology (London), 198, 237–247.

    Google Scholar 

  • Darlington, J. P. E. C. (1984). Two types of mounds built by the termite Macrotermes subhyalinus in Kenya. Insect Science Applications, 5, 481–491.

    Google Scholar 

  • Darlington, J. P. E. C. (1985). Lenticular soil mounds in the Kenya highlands. Oecologia, 66, 116–121.

    Google Scholar 

  • Denney, R. N. (1952). A summary of North American beaver management (Current Report 28). Denver: Colorado Fish and Game Department.

    Google Scholar 

  • Dietrich, U. (1985). Beobachtungen am Kanadischen Biber Castor canadensis in einem Einbürgerungsgebiet auf der Insel Feuerland, Südamerika. Säugetierkundliche Mitteilungen, 32, 241–244.

    Google Scholar 

  • Djoshkin, W. W., & Safonov, W. G. (1972). Die Biber der Alten und Neuen Welt (Neue Brehm-Bücherei 437). Wittenberg Lutherstadt: Ziemsen.

    Google Scholar 

  • Donkor, N. T., & Fryxell, J. M. (1999). Impact of beaver foraging on structure of lowland forests of Algonkin Provincial Park, Ontario. Forest Ecology and Management, 118, 83–92.

    Google Scholar 

  • Donovan, S. E., Eggleton, P., Dubbin, W. E., Batchelder, M., & Dibog, L. (2001). The effect of soil-feeding termite, Cubitermes fungifaber (Isoptera; Termitidae) on soil properties: Termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia, 45, 1–11.

    Google Scholar 

  • Durka, W., Babik, W., DuCroz, J. F., Heidecke, D., Rosell, F., Samjaa, R., Saveljev, P., Stubbe, A., Ulevičius, A., & Stubbe, M. (2005). Mitochondrial phylogeography of the Eurasian beaver (Castor fiber L.). Molecular Ecology, 14, 3843–3956.

    CAS  Google Scholar 

  • Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G., & Bignell, N. C. (1996). The diversity, abundance, and biomass of termites under different levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philosophical Transactions: Biological Sciences, 351, 51–68.

    Google Scholar 

  • Elkins, N. Z., Sabol, G. V., Timothy, J. W., & Whitford, W. G. (1986). The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia (Berlin), 68, 521–528.

    Google Scholar 

  • Fields, M. J., Coffin, D. P., & Gosz, J. R. (1999). Burrowing activities of kangaroo rats and patterns in plant species dominance at a shortgrass steppe-desert grassland ecotone. Journal of Vegetation Science, 10, 123–130.

    Google Scholar 

  • Flemming, P. A., & Loveridge, J. P. (2003). Miombo woodlands termite mounds: Resource islands for small vertebrates? Journal of Zoology (London), 259(2), 1–8.

    Google Scholar 

  • Freeland, W. J., & Kanzen, D. H. (1974). Strategies in herbivory by mammals. The role of plant secondary compounds. The American Naturalist, 108, 269–289.

    CAS  Google Scholar 

  • Gard, R. (1961). Effects of beaver on trout in Sagehen Creek. Journal of Wildlife Management, 25, 221–242.

    Google Scholar 

  • Gill, D. (1972). The evolution of a discrete beaver habitat in the Mackenzie River Delta, Northwest Territories. The Canadian Field Naturalist, 86, 233–239.

    Google Scholar 

  • Glover, P. E., Trump, E. C., & Wateridge, L. E. D. (1964). Termitaria and vegetation patterns on the Loita plains of Kenya. Ecology, 52, 367–377.

    Google Scholar 

  • Godoy, J. C. (1963). Fauna Silvestre (Evaluación de los recursos naturales de la Argentina 8). Buenos Aires: Consejo Federal de Investiones.

    Google Scholar 

  • Goudie, A. S. (1988). The geomorphological role of termites and earthworms in the tropics. In H. A. Viles (Ed.), Biogeomorphology (pp. 166–192). Oxford: Blackwell.

    Google Scholar 

  • Grasse, J. E. (1949). Beaver and trout. Wyoming Wildlife 13(11), 4–13, 34.

    Google Scholar 

  • Grasse, J. E. (1951). Beaver ecology and management in the Rockies. Journal of Forestry, 49(1), 3–6.

    Google Scholar 

  • Grassé, P. P. (1984). Termitologia: Foundation et construction. II. Paris: Masson.

    Google Scholar 

  • Grassé, P. P., & Noirot, C. (1958). Le meule des termites championnistes et sa significance symbiotique. Annales des sciences naturelles. Zoologie et biologie animale, 20(11), 113–128.

    Google Scholar 

  • Guernell, A. M. (1998). The hydrogeomorphological effects of beaver dam-building activity. Progress in Physical Geography, 22, 167–189.

    Google Scholar 

  • Gumnior, M., & Thiemeier, H. (2003). Der Einfluss zweier Termitenarten auf Genese und Stoffhaushalt von Sandböden in Nordost-Nigeria. Geoöko, 24, 321–336.

    Google Scholar 

  • Hall, E. R. (1971). Ecology of beaver and selection of prey by wolves in central Ontario. M.S. Thesis, University of Toronto.

    Google Scholar 

  • Hall, E. R., & Kelson, K. R. (1959). Mammals of North America. New York: Ronald Press.

    Google Scholar 

  • Halley, D. J. (2011). Sourcing Eurasian beaver Castor fiber stock for reintroductions in Great Britain and Western Europe. Mammal Review, 41(1), 40–53.

    Google Scholar 

  • Harris, W. V. (1961). Termites: Their recognition and control. London: Longmans.

    Google Scholar 

  • Harthun, M. (1999). Zur Bedeutung der Biberwiesen in der mitteleuropäischen Urlandschaft. In B. Gerken & M. Görner (Eds.), Europäische Landschaftsentwicklung mit großen Weidetieren (Natur und Kulturlandschaft 3, pp. 146t–155t). Höxter/Jena: Huxaria Druck und Verlag.

    Google Scholar 

  • Harthun, M. (2000). Einflüsse der Stauaktivität des Bibers (Castor fiber albicaulis) auf physikalische und chemische Parameter von Mittelgebirgs-Bächen (Hessen, Deutschland). Limnologica, 30, 21–35.

    CAS  Google Scholar 

  • Hartman, G. (1996). Habitat selection by European beaver (Castor fiber) colonizing a boreal landscape. Journal of Zoology (London), 240, 317–325.

    Google Scholar 

  • Hawkins, L., & Nicoletto, P. F. (1992). Kangaroo rat burrows structure the spatial organization of ground dwelling animals in a semiarid grassland. Journal of Arid Environments, 23, 199–208.

    Google Scholar 

  • Hay, K. G. (2009). Succession of beaver ponds in Coloradao 50 years after beaver removal. Jounal of Wildlife Management, 74(8), 1732–1736.

    Google Scholar 

  • Heidecke, D. (1985). Ergebnisse und Probleme beim Schutze des Elbebibers. Naturschutzarbeit in Berlin und Brandenburg, 21, 6–12.

    Google Scholar 

  • Heim, R. (1963). Les termitomyces de la République Centrafricain I. Cahiers Maboke, 1, 20–26.

    Google Scholar 

  • Hesse, P. R. (1955). A chemical and physical study on the soils of termite mounds in East Africa. Journal of Ecology, 43, 449–461.

    Google Scholar 

  • Heth, G. (1991). The environmental impact of subterranean mole rats (Spalax ehrenbergii) and their burrows. Symposium of the Zoological Society London, 63, 265–280.

    Google Scholar 

  • Hogdon, H. E., & Lancia, R. A. (1983). Behavior of the North American beaver, Castor Canadensis. Acta Zoologica Fennica, 174, 99–103.

    Google Scholar 

  • Holtmeier, F.-K. (1966). Die ökologische Funktion des Tannenhähers im Zirben-Lärchenwald und an der Waldgrenze im Oberengadin. Journal für Ornithologie, 4, 337–345.

    Google Scholar 

  • Holtmeier, F.-K. (1986). Ökologische Studien in Lappland und Südfinnland. Gesellschaft zur Förderung der Westfälischen Wilhelms-Universität, 1984/85, 22–26.

    Google Scholar 

  • Holtmeier, F.-K. (1987). Biber und Steinwild. Ökologische Aspekte der Wiederansiedlung von Tieren in ihren ehemaligen Lebensräumen. Münstersche Geographische Arbeiten, 26, 99–117.

    Google Scholar 

  • Holtmeier, F.-K. (1999). Tiere als landschaftsökologische Faktoren. Arbeiten aus dem Institut für Landschaftsökologie der Westfälischen Wilhlems-Universitat 6.

    Google Scholar 

  • Holtmeier, F.-K. (2002). Tiere in der Landschaft. Einfluss und ökologische Bedeutung. Stuttgart: UTB 8230.

    Google Scholar 

  • Holtmeier, F.-K. (2009). Mountain timberlines. Ecology, patchiness, and dynamics (Advances in Global Change Research 36). Dordrecht: Springer Science+Business Media B. V.

    Google Scholar 

  • Holtmeier, F.-K. (2012). Impact of wild herbivorous mammals and birds on the altitudinal and northern treeline ecotones. LandscapeOnline, 30, 1–28. doi:10.3097/LO.201230.

    Google Scholar 

  • Howard, R. J., & Larson, J. S. (1985). A stream habitat classification system for beaver. Journal of Wildlife Management, 49(1), 19–25.

    Google Scholar 

  • Huntly, N. (1995). How important are consumer species to ecosystem functioning? In C. G. Jones & J. H. Lawton (Eds.), Linking species and ecosystem (pp. 72–83). New York: Chapman & Hall.

    Google Scholar 

  • Huntly, N., & Inouye, R. (1988). Pocket gophers in ecosystems: Patterns and mechanisms. BioScience, 38(11), 786–793.

    Google Scholar 

  • Ives, R. I. (1942). The beaver-meadow complex. Journal of Geomorphology, 5, 191–203.

    Google Scholar 

  • Jenkins, S. H. (1975). Food selection by beavers. A multidimensional contingency table analysis. Oecologia, 21, 157–173.

    Google Scholar 

  • Jenkins, S. H. (1979). Seasonal and year-to-year differences in food selection by beavers. Oecologia, 44, 112–116.

    Google Scholar 

  • Jenkins, S. H. (1980). A size-distance relation in food selection by beavers. Ecology, 61(4), 740–746.

    Google Scholar 

  • Joachim, A. W. R., & Kandiah, S. (1940). Studies on Ceylon soils XVI. A comparison of soils from termite mounds and adjacent land. Tropical Agriculturist Magazine of the Ceylon Agricultural Society, 194, 119–129.

    Google Scholar 

  • Johnson, C. E. (1927). The beaver in the Adirondacks: Its economics and natural history. Roosevelt Wildlife Bulletin, 4(4), 501–541, Syracuse.

    Google Scholar 

  • Johnston, C. A., & Naiman, R. J. (1987). Boundary dynamics at the aquatic-terrestrial interface: The influence of beaver and geomorphology. Landscape Ecology, 4(1), 5–19.

    Google Scholar 

  • Johnston, C. A., & Naiman, R. J. (1990a). Browse selection by beaver: Effects in riparian forest composition. Canadian Journal of Forest Research, 20, 1036–1043.

    Google Scholar 

  • Johnston, C. A., & Naiman, R. J. (1990b). Aquatic patch creation in relation to beaver population trend. Ecology, 71(4), 1617–1621.

    Google Scholar 

  • Jones, J. A. (1990). Termites, soil fertility, and carbon cycling in dry tropical Africa: A hypothesis. Journal of Tropical Ecology, 6, 291–305.

    Google Scholar 

  • Josens, G. (1992). The soil fauna of tropical savannas. In F. Bourlière (Ed.), Ecosystems of the world (Vol. 13, pp. 505–524). Amsterdam: Elsevier.

    Google Scholar 

  • Jürgens, N. (2013). The biological underpinnings of Namib Desert fairy circles. Science, 339, 1618–1621.

    Google Scholar 

  • Kämpfer, M. (1967). Biber (Castor) – Biologie, Ökologie, Vorkommen, Wiederreinbürgerung. Bundesanstalt für Vegetationskunde, Naturschutz und Landschaftspflege, Bibliographie Nr. 5.

    Google Scholar 

  • Keya, S. O., Mureria, N. K., & Arshad, M. A. (1982). Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. Journal of Arid Environments, 5, 353–359.

    Google Scholar 

  • Konate, S., Merdaci, K., Lepage, M., Le Roux, X., & Tessier, D. (1998, June 20–26). Effect of termitaria on spatio-temporal variations of soil water in a tropical savanna. Proceedings 16. World Congress of Soil Science, Montpellier, France, Symposium No. 18, Contribution 1129.

    Google Scholar 

  • Lal, R. (1987). Tropical ecology and physical edaphology. Chichester/New York/Brisbane/Toronto/Singapore: Wiley.

    Google Scholar 

  • Leary, R. J. (2012). Landscape and habitat attributes influencing beaver distribution (MNR Capstone Project). Logan: Utah State University.

    Google Scholar 

  • Lee, K. E., & Wood, T. G. (1971). Termites and soil. London/New York: Academic.

    Google Scholar 

  • Lepage, M., Abbadie, I., Konate, S., Merdaci, K., & Quedraogo, P. (1998, August 20–26). Structures related to termite activity and organic matter dynamics at different spatio-temporal scales. In Proceedings 16. World Congress of Soil Science, Montpellier, Symposium No. 9, Contribution 1143.

    Google Scholar 

  • Leuthold, W. (1977a). African ungulates. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Leuthold, W. (1977b). Spatial organization and strategy of habitat utilization of elephants in Tsavo National Park, Kenya. Zeitschrift fur Saugetierkunde, 42(6), 358–379.

    Google Scholar 

  • Lobry de Bryn, L. A., & Conacher, A. J. (1990). The role of termites and ants in soil modification: A review. Australian Journal of Soil Research, 28, 55–93.

    Google Scholar 

  • Löffler, E. (1996). Bioturbation als Faktor der Reliefgenese in den wechselfeuchten Tropen. Leipzig: Klett-Perthes.

    Google Scholar 

  • Logan, F. G. (1992). Termites (Isoptera) – A pest or resource for small farmers in Africa. Tropical Science, 32, 71–79.

    Google Scholar 

  • López-Hernández, D. (2001). Nutrient dynamics (C, N. and P) in termite mounds of the Orinoco Llanos (Venezuela). Soil Biology and Biochemistry, 23, 747–753.

    Google Scholar 

  • Lovegrove, B. (1993). The living deserts of Southern Africa. Vlaeberg: Fernwood Press.

    Google Scholar 

  • MacDonald, D. (1956). Beaver carrying capacity of certain mountain streams in North Park, Colorado. M.S. Thesis, Colorado State University, Fort Collins.

    Google Scholar 

  • MacMahon, J. A., & Wagner, F. H. (1985). The Mojave and Chihuahuan deserts of North America. In M. Evenari and I. Noy-Meir (Eds.), Warm deserts ecosystems (Ecosystems of the World 12, pp. 105–202). Amsterdam: Elsevier.

    Google Scholar 

  • Matsumoto, T. (1976). The role of termites in an equatorial rain forest ecosystem of West Malaysia. Oecologia, 22, 153–178.

    Google Scholar 

  • Medin, D. E., & Torquemada, K. E. (1988). Beaver in western North America: An annotated bibliography 1966 to 1986 (General Technical Report INT 242). Ogden: USDA Forest Service, Intermountain Research Station.

    Google Scholar 

  • Mertens, R. (1961). Tier und Landschaft. Zoologische Unterlagen zur Landschaftskunde. Frankfurter Geographische Hefte, 37, 31–38.

    Google Scholar 

  • Milne, G. V. (1947). A soil reconnaissance journey through parts of Tanganyka Territory, December 1935 to February 1936. Journal of Ecology, 35, 192–264.

    Google Scholar 

  • Moll, E. (1994). Fairy rings in Kaokoland. In Proceedings of the 13th Plenary Meeting ETFAT, Zoma, Malawi, pp. 1203–1210.

    Google Scholar 

  • Müller, P. (1977). Tiergeographie. Stuttgart: Teubner.

    Google Scholar 

  • Naiman, R. J. (1988). Animal influences on ecosystem dynamics. BioScience, 38, 750–752.

    Google Scholar 

  • Naiman, R. J., Melillo, J. M., & Hobbie, J. E. (1986). Ecostem alteration of a boreal forest stream by beaver (Castor canadensis). Ecology, 67, 1254–1269.

    Google Scholar 

  • Naiman, R. J., Johnston, C. A., & Kelley, J. C. (1988). Alteration of North American streams by beaver. BioScience, 38(11), 753–762.

    Google Scholar 

  • Naiman, R. J., Pinnay, G., Johnston, C. A., & Pastor, J. (1994). Beaver influences on the long-term biogeochemical characteristics of boreal forests drainage networks. Ecology, 75, 905–921.

    Google Scholar 

  • Nash, M. H., & Whitford, W. G. (1995). Subterranean termites: Regulators of soil organic matter in the Chihuahuan Desert. Biology and Fertility of Soils, 19, 15–18.

    Google Scholar 

  • Neff, D. J. (1957). Ecological effects of beaver habitat abandonment in the Colorado Rockies. Journal of Wildlife Management, 21, 80–84.

    Google Scholar 

  • Nyamapfene, K. W. (1986). The use of termite mounds in Zimbabwe peasant agriculture. Tropical Agriculture (Trinidad), 63(2), 191–192.

    Google Scholar 

  • Nye, P. H. (1955). Some soil-forming processes in the humid tropics. IV. The action of the soil fauna. Journal of Soil Science, 6, 73–83.

    Google Scholar 

  • O’Brien, D. F. (1938). A qualitative and quantitative food habitat study of beavers in Maine. M.S. thesis, University of Maine.

    Google Scholar 

  • Odum, E. (1991). Prinzipien der Ökologie. Lebensräume, Stoffkreisläufe, Wachstumsgrenzen. Heidelberg: Spektrum der Wissenschaft.

    Google Scholar 

  • Okullo, P., Greve, P. M. K., & Moe, S. R. (2013). Termites, large herbivores, and herbaceous plant dominance structure small mammal communities in savannahs. Ecosystems, 16, 1002–1012.

    Google Scholar 

  • Oliveira, L. A., & Paiva, W. O. (1985). Use of termite nests and chicken manure as fertilizers for lettuce in red yellow podzolic soils of the Manaus region. Acta Amazonica, 15(1–2), 13–18.

    Google Scholar 

  • Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 65–75.

    Google Scholar 

  • Paine, R. T. (1969). A note on trophic complexity and community stability. American Naturalist, 103, 91–93.

    Google Scholar 

  • Pendleton, R. I. (1941). Some results of termite activity in Thailand soils. Thai Science Bulletin, 3(2), 29–35.

    CAS  Google Scholar 

  • Pendleton, R. I. (1942). Importance of termites in modifying certain Thailand soils. Journal of the American Society of Agronomy, 34, 340–344.

    CAS  Google Scholar 

  • Perry, D. A. (1994). Forest ecosystems. London/Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Persico, L., & Meyer, G. (2009). Holocene beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming. Quaternary Research, 71, 340–353.

    Google Scholar 

  • Pilleri, G. (1960). Biber. Umschau, 14, 420–424.

    Google Scholar 

  • Pollock, M. M., Naiman, R. J., Erickson, H. E., Johnston, C. A., Pastor, J., & Pinay, G. (1995). Beaver as engineers: Influences on biotic and abiotic characteristics of drainage basins. In C. G. Jones & J. H. Lawton (Eds.), Linking species and ecosystem (pp. 117–126). New York: Chapman & Hall.

    Google Scholar 

  • Pomeroy, D. E. (1976). Some effects of mound-building termites on soils in Uganda. Journal of Soil Science, 27, 377–394.

    CAS  Google Scholar 

  • Pullan, R. A. (1979). Termite hills in Africa: Their characteristics and evolution. Catena, 6, 267–291.

    Google Scholar 

  • Reid, K. A. (1951). Planning for wildlife on a managed forest. Journal of Forestry, 49(6), 436–439.

    Google Scholar 

  • Remillard, M. M., Gruendling, G. K., & Bogucki, D. J. (1987). Disturbance in beaver (Castor canadensis Kuhl) and landscape heterogeneity. In M. G. Turner (Ed.), Landscape heterogeneity and disturbance (pp. 103–123). New York: Springer.

    Google Scholar 

  • Remmert, H. (1980). Ökologie. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Richard, P. B. (1983). Mechanisms and adaptation in the constructive behavior of the beaver (C. fiber L.). Acta Zoologica Fennica, 174, 105–108.

    Google Scholar 

  • Roller, S. (2001). Gewässergütedaten – Auswertungsmöglichkeiten am Beispiel des Bibers (Castor fiber). Gewässer-Info, 20(Ferbruar 2002), 106–108.

    Google Scholar 

  • Romašov, B. V. (1992). Krankheiten der Biber. In Semiaquatische Säugetiere (Wissenschaftliche Beiträge der Universität Halle, pp. 199–203).

    Google Scholar 

  • Rosell, F., Bozsér, O., Collen, P., & Parker, H. (2005). Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal Review, 35(3/4), 248–276.

    Google Scholar 

  • Ruedemann, R., & Schoonmaker, W. J. (1938). Beaver as geological agents. Science, 88(2292), 523–525.

    CAS  Google Scholar 

  • Rutherford, W. H. (1955). Wildlife and environmental relationships of beavers in Colorado forest. Journal of Forestry, 53, 803–806.

    Google Scholar 

  • Rutherford, W. H. (1964). The beaver in Colorado, its biology, ecology, management and economics, (Colorado Game, Fish and Parks Department, Technical Publication 17, pp. 1–49), Denver.

    Google Scholar 

  • Salyer, J. C. (1935). Preliminary report on beaver-trout investigations. American Game, 24(1), 6 and 13–15.

    Google Scholar 

  • Sands, W. A. (1969). The association of termites and fungi. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 1, pp. 495–524). New York/London: Academic.

    Google Scholar 

  • Scheffer, P. M. (1938). The beaver as an upstream engineer. Soil Conservation, 3(7), 178–181.

    Google Scholar 

  • Schneider, E. (1985). Erfahrungen zum Management lokaler Vorkommen des Bibers Castor fiber L. in der Bundesrepublik Deutschland. Angewandte Zoology, 1–2, 191–203.

    Google Scholar 

  • Schneider, E., & Schulte, R. (1985). Befunde zu den Habitatansprüchen des Europäischen Bibers (Castor fiber L.) aus einem Wiederansiedlungsversuch an einem Mittelgebirgsbach der nördlichen Eifel. Zeitschrift für Angewandte Zoologie, 72(1/2), 167–179.

    Google Scholar 

  • Schott, C. (1934). Kanadische Biberwiesen - ein Beitrag zur Frage der Wiesenbildung. Zeitschrift der Gesellschaft für Erdkunde, 9/10, 370–374, Berlin.

    Google Scholar 

  • Seastedt, T. R., Reichmann, O. J., & Todd, T. C. (1986). Microarthropods and nematodes in kangaroo rat burrows. Southwestern Naturalist, 31, 114–116.

    Google Scholar 

  • Sharp, L. A., & Barr, W. F. (1960). Preliminary investigation of harvester ants on Southern Idaho rangeland. Journal of Rangeland Management, 13, 131–134.

    Google Scholar 

  • Sinclair, A. R. E. (1979). The Serengeti ecosystem. In A. R. E. Sinclair & M. Norton-Griffiths (Eds.), Serengeti. Dynamics of an ecosystem (pp. 31–45). Chicago/London: University of Chicago Press.

    Google Scholar 

  • Slough, B. G., & Sadleir, R. M. F. S. (1977). A land capability classification system for beaver (Castor canadensis Kuhl). Canadian Journal of Zoology, 55, 1324–1355.

    Google Scholar 

  • Smith, B. H. (1980). Riparian willow management: Its problems, potentials, within the scope of multiple use on public lands. Lander: Shrub Ecology Workshop.

    Google Scholar 

  • Smith, D. W., Murphy, S. C., Phillips, M. K., & Crabtree, R. (1996). Beaver survey: Yellowstone National Park (USDI: Report on File). Mammoth: National Park Service.

    Google Scholar 

  • Snodgrass, J. W. (1997). Temporal and spatial dynamics of beaver-created patches as influenced by management practices in a south-eastern North American landscape. Journal of Applied Ecology, 34, 1043–1056.

    Google Scholar 

  • Stegeman, L. C. (1954). The production of aspen and its utilisation by beaver on the Huntington Forest. Journal of Wildlife Management, 18, 348–358.

    Google Scholar 

  • Stocker, G. (1985). Biber (Castor fiber L.) in der Schweiz. Eigenössische Anstalt für das forstliche Versuchswesen, Berichte 274. Teufen: Kommissionsverlag Flück-Wirth.

    Google Scholar 

  • Stoops, G. (1964). Application of some pedological methods to the analysis of termite mounds. In A. Boullion (Ed.), Études sur les termites Africains (pp. 379–398). Léopoldville: Lépoldville University.

    Google Scholar 

  • Tansley, A. G. (1939). The British Isles and their vegetation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Trapnell, C. G., Friend, M. T., Chamberlain, G. T., & Birch, H. F. (1976). The effects of fire and termites on a Zambia woodland soil. Journal of Ecology, 64, 577–588.

    CAS  Google Scholar 

  • Troll, C. (1936). Termitensavannen. In H. Louis & W. Panzer (Eds.), Landeskundliche Forschung, Festschrift Norbert Krebs (pp. 275–312). Stuttgart: Engelhorns Nachf.

    Google Scholar 

  • Troll, C. (1963). Geographische Luftbildinterpreatation. Archiv für Internationale Photogrammetrie, 14, 266–274.

    Google Scholar 

  • Troll, C. (1970). Landschaftsökologie (Geoökologie) und Biogeocoenologie, eine terminologische Studie. Revue Roumaine de Géologie, Géophysique et Géographie, Series Géographie, 14(1), 9–18.

    Google Scholar 

  • Tschinkel, W. (2012). The life cycle and life span of the Maibian fairy circles. PLoS One, 7(6), e38056. doi:10.371/journal.pone.0038056.

  • Vásquez, D. P. (2002). Multiple effects of introduced mammalian herbivores in a temperate forest. Biological Invasions, 4, 175–191.

    Google Scholar 

  • Warren, E. R. (1926). Notes on the beaver colonies in the Longs Peak Region of Estes Park, Colorado. Roosevelt Wildlife Annals, 1(1–2), 192–234.

    Google Scholar 

  • Watson, R. M. (1967). The population ecology of wildebeest (Connochaetes taurinus albojubatus Thomas) in the Serengeti. Ph.D. thesis, Cambridge University.

    Google Scholar 

  • Watson, J. P. (1977). The use of mounds of the termite Macrotermes falciger (Gerstäcker) as a soil amendment. Journal of soil Science, 28(Suppl.), 664–672.

    Google Scholar 

  • Watt, A. D., Stork, N. E., McBeath, C., & Lawson, G. L. (1997). Impact of forest management on insect abundance and damage in a lowland tropical forest in southern Cameroon. Journal of Applied Ecology, 34, 985–998.

    Google Scholar 

  • Whitford, W. G. (1991). Subterranean termites and productivity of desert rangelands. Sociobiology, 19, 235–242.

    Google Scholar 

  • Whitford, W. G. (1999). Comparison of ecosystem processes in the Nama-Karoo and other deserts. In W. R. J. Dean & S. J. Milton (Eds.), The Karoo ecological patterns and processes (pp. 292–302). Cambridge: Cambridge University Press.

    Google Scholar 

  • Whitford, W. G., Steinberger, Y., & Ettershank, G. (1982). Contribution of subterranean termites to the ‘economy’ of Chihuahuan desert ecosystem. Oecologia, 55, 298–302.

    Google Scholar 

  • Whitford, W. G., Stinnet, K., & Anderson, J. (1988). Decomposition of roots in a Chihuahuan desert ecosystem. Oecologia, 75, 8–11.

    Google Scholar 

  • Wilsson, L. (1971). Observations and experiments on the ethology of the European beaver (Castor fiber L.). Viltrevy, 8(3), 113–266.

    Google Scholar 

  • Woo, M.-K., & Waddington, J. M. (1990). Effects of beaver dams on subarctic wetland hydrology. Arctic, 43(3), 223–230.

    Google Scholar 

  • Wood, T. G., & Sands, W. A. (1978). Their role of termites in ecosystems. In M. Vaughan (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wood, T. G. (1988). Termites and the soil environment. Biology and Fertility of Soil, 6, 228–236. Springer.

    Google Scholar 

  • Wright, J. P., Jones, C. G., & Flecker, A. S. (2002). An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia, 132, 96–101.

    Google Scholar 

  • Yeager, L. E., & Rutherford, W. H. (1957). An ecological basis for beaver management in the Rocky Mountain region. Transactions of the 22nd North American Wildlife Conference, March 5 and 6, 1957. Washington, DC: Wildlife Management Institute.

    Google Scholar 

  • Zahner, V. (1997). Einfluß des Bibers auf gewässernahe Wälder. München: Herbert Utz Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holtmeier, FK. (2015). Keystone Species. In: Animals' Influence on the Landscape and Ecological Importance. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9294-3_4

Download citation

Publish with us

Policies and ethics