Skip to main content

Ammonoid Buoyancy

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

The buoyancy of ammonoids is one of the most controversial issues of ammonoid paleobiology. This chapter gives a short historical review about attempts made to clarify the potential function of the cephalopod chambered shell (phragmocone) and ammonoid life habits either as benthic crawler or as free swimmers in the water column. In order to understand efficiency of buoyancy control and the mode of life of the extinct ammonoids decoupling of cameral liquid, process of osmotic pumping including local osmosis, pre-septal gas, and the role of the siphuncle and cameral liquid were discussed extensively. It is accepted that processes like osmotic pumping and local osmosis act in ammonoids due to similar architecture of the extant relatives including the presence of a siphuncle. Additionally, the calculation of buoyancy represents a major task which depends on exact reconstructions of volumes and densities for shell and soft body. With the rise of 3D-imaging techniques the determination of volumes were enhanced and now represent an important step towards more precise buoyancy calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appellöf A (1893) Die Schalen von Sepia, Spirula und Nautilus—Studien über den Bau und das Wachstum. Kongl Svenska Vetensk Akad Handl 25:1–106

    Google Scholar 

  • Arkell WJ (1957) Sutures and septa in Jurassic ammonite systematic. Geol Mag 94:235–248

    Google Scholar 

  • Ax P (2001) Das System der Metazoa. Fischer, Stuttgart

    Google Scholar 

  • Bandel K, von Boletzky S (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger 21:313–354

    Google Scholar 

  • Bandel K, Stinnesbeck W (2006) Naefia Wetzel 1930 from the Quiriquina Formation (Later Maastrichtian, Chile): relationship to modern Spirula and ancient Coleoidea (Cephalopoda). Acta Univ Carol Geol 49:21–32

    Google Scholar 

  • Barskov IS (1990) Internal structure of siphuncle of the Late Jurassic ammonite Virgatites virgatus. Trans Paleontol Inst 243:127–132

    Google Scholar 

  • Barskov IS (1996) Phosphatized blood vessels in the siphuncle of Jurassic ammonites. Bull Inst Océanogr, (Monaco, special) 14:335–341

    Google Scholar 

  • Barskov IS (1999) Why ammonoids have complex septa and sutures? In: Rozanov AY, Shevyrev AA (eds) Fossil cephalopods: recent advances in their study. Russian Academy of Science, Moscow

    Google Scholar 

  • Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New York

    Google Scholar 

  • Berry E (1928) Cephalopod adaptations—the record and its interpretations. Q Rev Biol (Baltimore) 3:92–108

    Google Scholar 

  • Bert P (1867) Mémoire sur la physiologie de la Seiche. Mem Soc Sci Phys Nat Bordeaux 5:114–138

    Google Scholar 

  • Bidder AM (1962) Use of the tentacles, swimming and buoyancy control in the Pearly Nautilus. Nature 196:451–454

    Google Scholar 

  • Bonting SL (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bittar I (ed) Membranes and Ion Transport. Wiley, New York

    Google Scholar 

  • Bruun AF (1943) The biology of Spirula spirula (L.). Dana Rep 4:1–46.

    Google Scholar 

  • Bruun AF (1950) New light on the biology of Spirula, a mesopelagic cephalopod (Essays on the natural sciences in honour of Captain Allan Hancock). University of Southern California Press, Los Angeles, pp 61–72

    Google Scholar 

  • Buckland W (1836) Geology and mineralogy considered with reference to natural theology, vol 1. William Pickering, London

    Google Scholar 

  • Chamberlain Jr JA (1987) Locomotion of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus—the biology and paleobiology of a living fossil. Springer, Dordrecht

    Google Scholar 

  • Chamberlain JA Jr, Moore WA Jr (1982) Rupture strength and flow rate of Nautilus siphuncular tube. Paleobiology 8:408–425

    Google Scholar 

  • Chamberlain JA Jr, Ward PD, Weaver JS (1981) Post-mortem ascent of Nautilus shells: implications for cephalopod paleobiogeography. Paleobiology 7:494–509

    Google Scholar 

  • Charbonnier S (2009) Le Lagerstätte de la Voulte un environment bathyal au Jurassique. Mém Mus Natl Hist Nat 199:1–272

    Google Scholar 

  • Checa A (1996) Origin of intracameral sheets in ammonoids. Lethaia 29:61–75

    Google Scholar 

  • Chun C (1915) The Cephalopoda part 1: Oegopsida, part 2: Myopsida, Octopoda—text and atlas. Scientific results of the German deepsea expedition on board the steamship “Valdivia” 1898–1899

    Google Scholar 

  • Clarke MR (1969) Cephalopoda collected on the Sond Cruise. J Mar Biol Assoc UK 49:961–976

    Google Scholar 

  • Clarke MR (1970) Growth and development of Spirula spirula. J Mar Biol Assoc UK 50:53–64

    Google Scholar 

  • Collins DH, Minton P (1967) Siphuncular tube of Nautilus. Nature 216:916–917

    Google Scholar 

  • Collins DH, Ward, PD, Westermann GEG (1980) Function of cameral water in Nautilus. Paleobiology 6:168–172

    Google Scholar 

  • Crick RE (1988) Buoyancy regulation and macroevolution in nautiloid cephalopods. Senck Leth 69:13–42

    Google Scholar 

  • Currie ED (1957) The mode of life of certain goniatites. Trans Geol Soc Glasg 22:169–186

    Google Scholar 

  • Daniel TL, Helmuth BS, Saunders WB, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470–481

    Google Scholar 

  • Delanoy G, Magnin A, Sélébran M, Sélébran J (1991) Moutoniceras nodosum d’Orbigny, 1850 (Ammonoidea, Ancyloceratina), une très grande ammonite hétéromorphe du Barrémien inférieur. Rev Paléobiol 10:229–245.

    Google Scholar 

  • Denton EJ (1962) Some recently discovered buoyancy mechanisms in marine animals. Proc R Soc Lond B 265:366–370

    Google Scholar 

  • Denton EJ (1971) Examples of the use of active transport of salts and water to give buoyancy in the sea. Phil Trans R Soc Lond B 262:277–287

    Google Scholar 

  • Denton EJ (1974) On buoyancy and the lives of modern and fossil cephalopods. Proc R Soc Lond B 185:273–299

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961a) The buoyancy of the cuttlefish Sepia officinalis (L.). J Mar Biol Assoc UK 41:319–342

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961b) The effect of light on the buoyancy of the cuttlefish. J Mar Biol Assoc UK 41:343–350

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961c) The distribution of gas and liquid within the cuttlebone. J Mar Biol Assoc UK 41:365–381

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1966) On the buoyancy of the pearly Nautilus. J Mar Biol Assoc UK 46:723–759

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1971) Further observations on the buoyancy of Spirula. J Mar Biol Assoc UK 51:363–373

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1973) Floatation mechanisms in modern and fossil cephalopods. Adv Mar Biol 11:197–268

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Howarth JV (1961) The osmotic mechanism of the cuttlebone. J Mar Biol Assoc UK 41:351–364

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Howarth JV (1967) On the buoyancy of Spirula spirula. J Mar Biol Assoc UK 47:181–191

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Shaw TI (1969) A buoyancy mechanism found in cranchid squid. Proc R Soc Lond B 174:271–279

    Google Scholar 

  • Derham W (1726) Philosophical experiments and observations of the late eminent Dr. Robert Hooke, Derham, London

    Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing gradient osmotic flow—a mechanism for coupling water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    Google Scholar 

  • Diamond JM, Bossert WH (1968) Functional consequences of ultra-structural geometry in “backwards” fluid-transporting epithelia. J Cell Biol 37:694–702

    Google Scholar 

  • Diener C (1912) Lebensweise und Verbreitung der Ammoniten. Neues Jahrb Miner Geol Palaontol 2:67–89

    Google Scholar 

  • Donovan D (1964) Cephalopod phylogeny and classification. Biol Rev 39:259–287

    Google Scholar 

  • Drushchits VV, Doguzhaeva LA (1981) Ammonites under the electron microscope (internal shell structure and systematics of Mesozoic Phylloceratidae, Lytoceratidae and 6 families of Early Cretaceous Ammonitidae). Moscow University, Moscow

    Google Scholar 

  • Dumont ER, Piccirillo J, Grosse IR (2005) Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. Anat Rec 283A:319–330

    Google Scholar 

  • Dunstan AJ, Ward PD, Marshall NJ (2011) Vertical Distribution and Migration Patterns of Nautilus pompilius. PLoS One 6:e16312

    Google Scholar 

  • Dzik J (1981) Origin of the Cephalopoda. Acta Palaeont Pol 26:161–91

    Google Scholar 

  • Ebel K (1983) Berechnungen zur Schwebfähigkeit von Ammoniten. Neues Jahrb Geol Paläontol (MMonatshefte) 1983:614–640

    Google Scholar 

  • Ebel K (1985) Gehäusespirale und Septenform bei Ammoniten unter der Annahme vagil benthischer Lebensweise. Paläontol Z 59:109–123

    Google Scholar 

  • Ebel K (1990) Swimming abilities of ammonites and limitations. Paläontol Z 64:25–37

    Google Scholar 

  • Ebel K (1992) Mode of life and soft body shape of heteromorph ammonites. Lethaia 25:179–193

    Google Scholar 

  • Ebel K (1993) Negative buoyancy of ammonoids—reply. Lethaia 26:260

    Google Scholar 

  • Ebel K (1999) Hydrostatics of fossil ectocochleate cephalopods and its significance for the reconstruction of their lifestyle. Paläontol Z 73:277–288

    Google Scholar 

  • Engeser, T (1996) The position of the Ammonoidea within the Cephalopoda. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in Geobiology 13. Plenum, New York

    Google Scholar 

  • Finn, JK, Norman, MD (2010) The argonaut shell: gas-mediated buoyancy controlin a pelagic octopus. Proc R Soc B 277:2967–2971

    Google Scholar 

  • Gottobrio WE, Saunders WB (2005) The clymeniid dilemma: functional implications of the dorsal siphuncle in clymeniid ammonoids. Paleobiology 31:233–252

    Google Scholar 

  • Greenwald L, Ward PD (1982) On the source of cameral liquid in the chambered Nautilus. Veliger 25:169–170.

    Google Scholar 

  • Greenwald L, Ward PD (1987) Buoyancy in Nautilus. In: Saunders BW, Landman NH (eds) Nautilus—the biology and paleobiology of a living fossil. Springer, Dordrecht

    Google Scholar 

  • Greenwald L, Ward PD, Greenwald OE (1980) Cameral liquid transport and buoyancy control in the chambered nautilus (Nautilus macromphalus). Nature 286:55–56

    Google Scholar 

  • Greenwald L, Cook CB, Ward PD (1982) The structure of the chambered Nautilus siphuncle: the siphuncular epithelium. J Morphol 172:5–22

    Google Scholar 

  • Greenwald L, Verderber G, Singley C (1984) Localization of Na-K ATPase activity in the Nautilus siphuncle. J Exp Zool 229:481–484

    Google Scholar 

  • Guex J (2005) Buoyancy control and growth rates in ammonoids: new preliminary remarks about an old Red Herring. Bull Géol Lausanne 365:1–4

    Google Scholar 

  • Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckman’s law of covariation. Bull Soc Géol Fr 174:603–606

    Google Scholar 

  • Hammer Ø, Bucher H (2005) Buckman’s law of covariation—a case of proportionality. Lethaia 38:67–72

    Google Scholar 

  • Hammer Ø, Bucher H (2006) Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontol Res 10:91–96

    Google Scholar 

  • Heath TL (1897) The works of Archimedes. Clay and Sons, Cambridge University Press, Warehouse, London

    Google Scholar 

  • Heptonstall WB (1970) Buoyancy control in ammonoids. Lethaia 3:317–328.

    Google Scholar 

  • Hewitt RA (1985) Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina. Neues Jahrb Geol Palaontol Abh 170:273–290

    Google Scholar 

  • Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York.

    Google Scholar 

  • Hewitt RA, Westermann GEG (1987) Function of complexly fluted septa in ammonoid shells 2. Septal evolution and conclusions. Neues Jahrb Geol Palaontol Abh 174:135–169

    Google Scholar 

  • Hewitt RA, Westermann GEG (1993) Growth rates of ammonites estimated from aptychi. Geobios Mem Spec 15:203–208

    Google Scholar 

  • Hewitt RA, Westermann GEG (1996) Post-mortem behaviour of Early Paleozoic nautiloids and paleobathymetry. Paläontol Z 70:405–424

    Google Scholar 

  • Hewitt RA, Westermann GEG (1997) Mechanical significance of ammonoid septa with complex sutures. Lethaia 30:205–212

    Google Scholar 

  • Hewitt RA, Westermann GEG, Judd RL (1999) Buoyancy calculations and ecology of Callovian (Jurassic) cylindroteuthid belemnites. Neues Jahrb Geol Paläont Abh 211:89–112

    Google Scholar 

  • Hoffmann R (2010) New insights on the phylogeny of the Lytoceratoidea (Ammonitina) from the septal lobe and its functional interpretation. Rev Paléobiol 29:1–156

    Google Scholar 

  • Hoffmann R, Zachow S (2011) Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). IAMG 2011 publication, Salzburg. doi:10.5242/iamg.2011.0163:506-516

    Google Scholar 

  • Hoffmann R, Schultz JA, Schellhorn R, Rybacki E, Keupp H, Gerden SR, Lemanis R, Zachow S (2014) Non-invasive imaging methods applied to neo- and paleontological cephalopod research. Biogeosciences 11: 2721–2739. doi:10.5194/bg-11-2721-2014

    Google Scholar 

  • Hooke R (1726) Philosophical experiments and observations. In: Derham W (ed) Printers to the Royal Society 8:807–810

    Google Scholar 

  • Jacobs DK (1992) The support of hydrostatic load in cephalopod shells—adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present. In: Hecht MK, Wallace B, MacIntyre RJ (eds) Evolutionary biology, 26, Plenum, New York

    Google Scholar 

  • Jacobs DK (1996) Chambered cephalopod shells, buoyancy, structure and decoupling: history and red herrings. Palaios 11:610–614

    Google Scholar 

  • Jacobs DK, Chamberlain JA Jr (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology 13. Plenum, New York

    Google Scholar 

  • Jones D, Evans AR, Siu KWK (2012) The sharpest tool in the box? Quantitative analysis of conodont element functional morphology. Proc R Soc Biol 279:2849–2854

    Google Scholar 

  • Kalender W, Felsenberg D, Genant HK (1995) The European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92

    Google Scholar 

  • Kanie Y, Fukuda Y, Nakahara K, Seki K, Hattori H (1980) Implosion of living Nautilus under increased pressure. Paleobiology 6:44–47

    Google Scholar 

  • Kelly A (1901) Beiträge zur mineralogischen Kenntnis der Kalkausscheidungen im Tierreich. Jenä Z 35:429–494

    Google Scholar 

  • Keupp H (1997) Paläopathologische Analyse einer “Population” von Dactylioceras athleticum (Simpson) aus dem Unter-Toarcium von Schlaifhausen/Oberfranken. Berl Geowiss Abh 25:243–267

    Google Scholar 

  • Keupp H (2000) Ammoniten—Paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berl Paläobiol Abh 10:1–390

    Google Scholar 

  • Keupp H, Röper M, Seilacher A (1999) Paläobiologische Aspekte von syn vivo-besiedelten Ammonoideen im Plattenkalk des Ober-Kimmeridgiums von Brunn in Ostbayern. Berl Geowiss Abh 30:121–145

    Google Scholar 

  • Klinger HC (1981) Speculations on buoyancy control and ecology in some heteromorph ammonites. Syst Assoc Spec Vol 18:337–355

    Google Scholar 

  • Klug C (2001) Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215–233

    Google Scholar 

  • Klug C, Lehmann J (2015) Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons (this volume)

    Google Scholar 

  • Klug C, Korn D, Richter U, Urlichs M (2004) The black layer in cephalopods from the German Muschelkalk (Middle Triassic). Palaeontology 47:1407–1425

    Google Scholar 

  • Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia 41:477–492

    Google Scholar 

  • Klug C, Riegraf W, Lehmann J (2012) Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in the Teutoburger Wald (Germany). Palaeontology 55:1307–1331

    Google Scholar 

  • Klug C, Kröger B, Vinther J, Fuchs D, De Baets K (2015a) Ancestry, origin and early evolution of ammonoids. (this volume)

    Google Scholar 

  • Klug C, Zatoń M, Parent H, Hostettler B, Tajika A (2015b) Mature modifications and sexual dimorphism. (this volume)

    Google Scholar 

  • Kröger B (2000) Schalenverletzungen an jurassischen Ammoniten—ihre paläobiologische und palökologische Aussagefähigkeit. Berl Geowiss Abh 33:1–97

    Google Scholar 

  • Kröger B (2001) Discussion—comments on Ebel’s benthic-crawler hypothesis for ammonoids and extinct nautiloids. Paläontol Z 75:123–125

    Google Scholar 

  • Kröger B (2002) On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35:61–70

    Google Scholar 

  • Kröger B (2003) The size of the siphuncle in cephalopod evolution. Senckenberg Lethaea 83:39–52

    Google Scholar 

  • Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 12 pp. doi:10.1002/bies.201100001

    Google Scholar 

  • Kruta I, Landman NH, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by exceptional jaws preservation. Science 331(70):70–72

    Google Scholar 

  • Kruta I, Landman NH, Cochran JK (2014) A new approach for the determination of ammonite and nautilid habitats. PLoS One 9:e87479 doi:10.1371/journal.pone.0087479

    Google Scholar 

  • Kulicki C (1979) The ammonite shell, its structure, development and biological significance. Palaeontol Pol 39:97–142

    Google Scholar 

  • Kulicki C (1996) Ammonoid shell microstructure. In: Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Longridge LM, Smith PL, Rawlings G, Klaptocz V (2009) The impact of asymmetries in the elements of the phragmocone of early Jurassic ammonites. Palaeontol Electron 12:1–15

    Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (delta18O, delta13C). Earth Planet Sci Lett 296:103–114 doi:10.1016/ j.epsl.2010.04.053

    Google Scholar 

  • Mangum CP, Towle DW (1982) The Nautilus siphuncle as an ion pump. Pac Sci 36:273–282

    Google Scholar 

  • Meigen W (1870) Über den hydrostatischen Apparat bei Nautilus pompilius. Arch Naturgesch 36:1–36

    Google Scholar 

  • Monks N, Young JR (1998) Body position and the functional morphology of Cretaceous heteromorph ammonites. Palaeontogr Electron, http:/www-odp.tamuedu/paleo/1998_1/toc.htm. Accessed 17 Jan 2015

    Google Scholar 

  • Moore R, Lalicker C, Fischer A (1952) Invertebrate fossils. McGraw-Hill Co., New York

    Google Scholar 

  • Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170

    Google Scholar 

  • Moseley H (1838) On the geometrical form of turbinated and discoid shells. Phil Trans R Soc Lond 1838:351–370

    Google Scholar 

  • Mutvei H (1983) Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre. Lethaia 16:233–240

    Google Scholar 

  • Mutvei H, Reyment RA (1973) Buoyancy control and siphuncle function in ammonoids. Palaeontology 16:623–636

    Google Scholar 

  • Naglik C, Monnet C, Götz S, Kolb C, De Baets K, Klug C (2015) Growth trajectories in chamber and septum volumes in major subclades of Paleozoic ammonoids. Lethaia: DOI:10.1111/let.12085. Accessed 17 Jan 2015

    Google Scholar 

  • Naglik C, Rikhtegar F, Klug C (2014) Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D-models. Lethaia: ca. 14 pp.

    Google Scholar 

  • O’Dor RK, Forsythe J, Webber DM, Wells J, Wells MJ (1993) Activity levels of Nautilus in the wild. Nature 362:626–628

    Google Scholar 

  • Okamoto T (1988) Changes in life orientation during the ontogeny of some heteromorph ammonites. Paleontology 31:281–294

    Google Scholar 

  • Owen R (1832) Memoir of the Pearly Nautilus (Nautilus Pompilius, Linn.). London. pp 1–68

    Google Scholar 

  • Owen R (1878) On the relative positions to their constructions of the chambered shells of cephalopods. Proc Zool Soc Lond 1878:955–975

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Google Scholar 

  • Pfaff E (1911) Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. Jahresber Niedersächs Geol Ver (Geol Abt Naturhist Ges Hannover) 4:207–223

    Google Scholar 

  • Pojeta J Jr (1980) Molluscan phylogeny. Tulane Stud Geol Paleontol 16:55–80

    Google Scholar 

  • Raup DM, Chamberlain JA Jr (1967) Equations for volume and center of gravity in ammonoids shells. J Paleontol 41:566–574

    Google Scholar 

  • Reboulet S, Giraud F, Proux O (2005) Ammonoid abundance variations related to changes in trophic conditions across the Oceanic Anoxic Event 1d (Latest Albian, SE France). Palaios 20:121–141

    Google Scholar 

  • Rein S (1999) On the swimming abilities of Ceratites De Haan and Germanonautilus Mojsisovics from the Upper Muschelkalk (Middle Triassic). Freiber Forschungsheft C481:39–47

    Google Scholar 

  • Reyment RA (1958) Some factors in the distribution of fossil Cephalopods. Acta Univ Stockh—Stockh Contrib in Geol 1:97–184

    Google Scholar 

  • Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3: experiments with exact models of certain shell types. Bull Geol Inst Univ Uppsala N. S. 4:7–41

    Google Scholar 

  • Ritterbush KA, Bottjer DJ (2012) Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446

    Google Scholar 

  • Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79

    Google Scholar 

  • Schmidt M (1925) Ammonitenstudien. Fortschr Geol Palaeontol 10:75–363

    Google Scholar 

  • Schmidt H (1930) Über die Bewegungsweise der Schalencephalopoden. Paläontol Z 12:194–208

    Google Scholar 

  • Schmidt DN, Rayfield ER, Cocking A (2013) Linking evolution and development: synchrotron radiation X-ray tomographic microscopy of planktic foraminifers. Palaeontology 56:741–749

    Google Scholar 

  • Schwarz EHL (1894) The Aptychus. Geol Mag, N S(Decade IV) 1:454–459

    Google Scholar 

  • Seilacher A (1960) Epizoans as a key to ammonoid ecology. J Paleontol 34:183–193

    Google Scholar 

  • Seilacher A, Gishlick AD (2015) Morphodynamics. CRC Press Taylor & Francis Group

    Google Scholar 

  • Seilacher A, Labarbera M (1995) Ammonites as Cartesian Divers. Palaios 10:493–506

    Google Scholar 

  • Shigeta Y (1993) Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26:133–146

    Google Scholar 

  • Spath LF (1919) Notes on ammonites. Geol Mag 56:26–58, 65–74, 115–122, 170–177, 220–225

    Google Scholar 

  • Stock SR (2009) MicroComputed tomography: methodology and applications. CRC Press, London

    Google Scholar 

  • Sutton MD, Briggs DEG, Siveter DJ et al (2001) Methodologies for the Visualization and Reconstruction of Three-dimensional Fossils from the Silurian Herefordshire Lagerstätte. Palaeontol Electron 4:1–17

    Google Scholar 

  • Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ (2006) Fossilized soft tissues in a Silurian platyceratid gastropod. Proc Royal Soc B 273(1590):1039–1044

    Google Scholar 

  • Sutton MD, Rahman IA, Garwood RJ (2014) Techniques for virtual palaeontology. Wiley, New York. doi:10.1002/9781118591192

    Google Scholar 

  • Swan ARH, Saunders WB (1987) Function and shape in late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297–311

    Google Scholar 

  • Tajika A, Naglik C, Morimoto N, Pascual-Cebrian E, Hennhöfer DK, Klug C (2014) Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Hist Biol, 27:181–191. Accessed 17 Jan 2015

    Google Scholar 

  • Tanabe K (1975) Functional morphology of Otoscaphites puerculus (Jimbo), an Upper Cretaceous ammonite. Trans Proc Palaeont Soc Jpn, N S 99:109–132

    Google Scholar 

  • Tanabe K, Landman NH (1996) Septal neck—siphuncular complex of ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology, Plenum, New York

    Google Scholar 

  • Tanabe K, Mapes RH, Sasaki T, Landman NH (2000) Soft part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia 3:83–91

    Google Scholar 

  • Tanabe K, Sasaki T, Mapes RH (2014) Soft-part anatomy of the siphuncle in ammonoids (this volume)

    Google Scholar 

  • Tasch P (1973) Paleobiology of invertebrates. Wiley, New York.

    Google Scholar 

  • Trueman AE (1941) The ammonite body chamber with special reference to the buoyancy and mode of life of the living ammonite. Quart J Geol Soc Lond 96:339–383

    Google Scholar 

  • Tsujino Y, Shigeta Y (2012) Biological response to experimental damage of the phragmocone and siphuncle in Nautilus pompilius Linnaeus. Lethaia 45:443–449

    Google Scholar 

  • Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr Palaeoclim Palaeoecol 144:135–160

    Google Scholar 

  • Vrolik W (1843) On the Anatomy of the Pearly Nautilus. Ann Mag Nat Hist 12:173–175

    Google Scholar 

  • Wani R, Kase T, Shigeta Y, De Ocampo R (2005) New look at ammonoid taphonomy, based on field experiments with modern chambered nautilus. Geology 33:849–852

    Google Scholar 

  • Ward PD (1979) Cameral liquid in Nautilus and ammonites. Paleobiology 5:40–49

    Google Scholar 

  • Ward PD (1980) Restructuring the chambered Nautilus. Paleobiology 6: 247–249

    Google Scholar 

  • Ward PD (1982) The relationship of siphuncle size to emptying rates in chambered cephalopods: implications for cephalopod paleobiology. Paleobiology 8:426–433

    Google Scholar 

  • Ward PD (1986) Rates and processes of compensatory buoyancy change in Nautilus macromphalus. Veliger 28:356–368

    Google Scholar 

  • Ward PD (1987) The Natural History of Nautilus. Allen & Unwin, Boston

    Google Scholar 

  • Ward PD, von Boletzky S (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc UK 64:955–966

    Google Scholar 

  • Ward PD, Greenwald L (1982) Chamber refilling in Nautilus. J Mar Biol Assoc UK 62:469–475

    Google Scholar 

  • Ward PD, Martin AW (1978) On the buoyancy of the Pearly Nautilus. J Exp Zool 205:5–12

    Google Scholar 

  • Ward PD, Westermann GEG (1977) First occurrence, systematics, and functional morphology of Nipponites (Cretaceous Lytoceratina) from the Americas. J Paleontol 51:367–372

    Google Scholar 

  • Ward PD, Stone R, Westermann GEG, Martin A (1977) Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the Cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3:377–388

    Google Scholar 

  • Ward PD, Greenwald L, Rougerie F (1980a) Shell implosion depth for living Nautilus macromphalus and shell strength of extinct cephalopods. Lethaia 13:182

    Google Scholar 

  • Ward PD, Greenwald L, Greenwald OE (1980b) The buoyancy of the chambered Nautilus. Sci Am 243:190–203

    Google Scholar 

  • Ward PD, Greenwald L, Magnier Y (1981) The chamber formation cycle in Nautilus macromphalus. Paleobiology 7:481–493

    Google Scholar 

  • Ward PD, Carlson B, Weekley M, Brumbaugh B (1984) Remote telemetry of daily vertical and horizontal movement by Nautilus in Palau. Nature 309:248–250

    Google Scholar 

  • Warnke KM, Oppelt A, Hoffmann R (2010) Stable isotopes during ontogeny of Spirula and derived hatching temperatures. Ferrantia 59:191–201

    Google Scholar 

  • Weitschat W, Bandel K (1991) Organic components in phragmocones of boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65: 269–303

    Google Scholar 

  • Wells M (1990) The dilemma of the jet set. New Sci 1704:44–47

    Google Scholar 

  • Westermann GEG (1956) Phylogenie der Stephanocerataceae und Perisphinctaceae des Dogger. Neues Jahrb Geol Paläont Abh 103:233–279

    Google Scholar 

  • Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled mesozoic ammonoids. Life Sci Contrib, R Ont Mus 78:1–39

    Google Scholar 

  • Westermann GEG (1973) Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6:383–403

    Google Scholar 

  • Westermann GEG (1975) Model for origin, function and fabrication of fluted cephalopod septa. Paläontol Z 49:235–253

    Google Scholar 

  • Westermann GEG (1977) Form and function of orthoconic cephalopod shells with concave septa. Paleobiology 3:300–321

    Google Scholar 

  • Westermann GEG (1982) The connecting rings of Nautilus and Mesozoic ammonids: implications for ammonite bathymetry. Lethaia 15:373–384

    Google Scholar 

  • Westermann GEG (1990) New developments in ecology of Jurassic-Cretaceous ammonoids. In: Pallini G, Cresta S, Santantonio M (eds) Fossili, Evolutione, Ambiente. Atti II Convenio Internationale Pergola 1987

    Google Scholar 

  • Westermann GEG (1993) On alleged negative buoyancy of ammonoids. Lethaia 26:246

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology, Plenum, New York

    Google Scholar 

  • Westermann GEG (1998a) Life habits of nautiloids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, Chichester

    Google Scholar 

  • Westermann GEG (1998b) Life habits of ammonoids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, Chichester

    Google Scholar 

  • Westermann GEG (2013) Hydrostatics, propulsion and life-habits of the Cretaceous ammonoid Baculites. Rev Paléobiol 32:249–265

    Google Scholar 

  • Westermann B, Beuerlein K, Hempelmann G, Schipp R (2002) Localization of putative neurotransmitters in the mantle and siphuncle of the mollusc Nautilus L. (Cephalopoda). Histochem J 34:435–440

    Google Scholar 

  • Willey A (1902) Contributions to the natural history of the Pearly Nautilus. In: Wiley A (ed.) Zoological results part 6, Cambridge University Press, Cambridge

    Google Scholar 

  • Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

CK and CN thank the Swiss National Science Foundation (SNF project numbers 200021-113956⁄ 1, 200020-25029, and 200020-132870) and RH and RL thank the Deutsche Forschungsgemeinschaft (DFG project numbers HO 4674/2-1) for financial support of their research, especially for the grinding tomography. We greatly appreciate the work of the members of the Heidelberg grinding tomography lab, namely Stefan Götz, who died much too young, Enrique Pascual-Cebrian, and Dominik Hennhöfer (all Heidelberg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoffmann, R., Lemanis, R., Naglik, C., Klug, C. (2015). Ammonoid Buoyancy. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_16

Download citation

Publish with us

Policies and ethics