Skip to main content

Nonvolatile Field-Effect Transistors Using Ferroelectric Doped HfO2 Films

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

Ferroelectrics are ideal for low power digital information storage since they can be switched purely field controlled with negligible current consumption and at the same time are nonvolatile. However, the incompatibility of classical ferroelectric materials with semiconductor technology has hindered the scaling of ferroelectric memory devices. Therefore, such devices are only used in niche applications today. In 2011, first reports indicated that hafnium oxide, which is a standard material in modern CMOS processes, can be transformed into a ferroelectric phase. Moreover, the specific properties such as much lower permittivity compared to classical perovskite based ferroelectrics and high coercive fields enable to realize scaled ferroelectric field effect transistors that show nonvolatile retention. Therefore, ferroelectric hafnium oxide can help to finally fully exploit the potential of ferroelectric memories. In this chapter, we will first show the basics of ferroelectric hafnium oxide. Then, the current understanding of the origin and technological parameters influencing the ferroelectricity in hafnium oxide are discussed. Finally, the current status and future prospects of a ferroelectric field effect transistor based memory technology are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Mitsui, Ferroelectrics and antiferroelectrics, in Springer Handbook of Condensed Matter and Materials Data, ed. by W. Martienssen, H. Warlimont (Springer, Heidelberg, 2005), pp. 903–938

    Chapter  Google Scholar 

  2. T. Mikolajick, Ferroelectric nonvolatile memories, in Reference Module in Material Science and Material Engineering, (Elsevier, 2015), pp. 1–5

    Google Scholar 

  3. D.A. Buck, Ferroelectrics for digital information storage and switching, master thesis, MIT Digital Computer Laboratory (1952)

    Google Scholar 

  4. J. Merz, J.R. Anderson, Ferroelectric storage devices. Bell Lab. Rec. 33, 335–342 (1955)

    Google Scholar 

  5. J.R. Anderson, Feroelectric Materials as Storage Elements for Digital Computers and Switching Systems. Trans. Amer. Inst. Elect. Engrs. 71, Part I Commun. Electron. 395–401 (1953)

    Google Scholar 

  6. B. Dennard, US Patent (1968)

    Google Scholar 

  7. D. Bondurant, Ferroelectronic RAM memory family for critical data storage. Ferroelectrics 112, 273–282 (1990)

    Article  Google Scholar 

  8. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1994)

    Article  Google Scholar 

  9. T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M.J. Kastner, N. Nagel, M. Moert, C. Mazure, FeRAM technology for high density applications. Microelectron. Reliab. 41, 947–950 (2001)

    Article  Google Scholar 

  10. C.-U. Pinnow, T. Mikolajick, Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13–K19 (2004)

    Article  Google Scholar 

  11. M. Röhner, T. Mikolajick, R. Hagenbeck, N. Nagel, Integration of FeRAM devices into a standard CMOS process—Impact of ferroelectric anneals on CMOS characteristics. Integr. Ferroelectr. 47, 61–70 (2002)

    Article  Google Scholar 

  12. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387–1402 (2001)

    Article  ADS  Google Scholar 

  13. K. Maruyama, M. Kondo, S.K. Singh, H. Ishiwara, New Ferroelectric Material for Embedded FRAM LSIs. Fujitsu Sci. Tech. J 43, 502–507 (2007)

    Google Scholar 

  14. J.-M. Koo, B.-S. Seo, S. Kim, S. Shin, J.-H. Lee, H. Baik, J.-H. Lee, J.H. Lee, B.-J. Bae, J.-E. Lim, D.-C. Yoo, S.-O. Park, H.-S. Kim, H. Han, S. Baik, J.-Y. Choi, Y. J. Park, Y. Park, Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. IEDM Techn. Digest. 340–343 (2005)

    Google Scholar 

  15. H.P. McAdams, R. Acklin, T. Blake, X.-H. Du, J. Eliason, J. Fong, W.F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, N. Qian, Y. Qiu, K.A. Remack, J. Rodriguez, J. Roscher, A. Seshadri, S.R. Summerfelt, A 64-Mb embedded FRAM utilizing a 130 nm 5LM Cu/FSG logic process. IEEE J. Solid-St. Circ. 39, 667–677 (2004)

    Google Scholar 

  16. I.M. Ross, Semiconductive translating device, U.S. patent 2791760 A (1957)

    Google Scholar 

  17. J.L. Moll, Y. Tarui, I.E.E.E. Trans, Electron Devices 10, 338 (1963)

    Article  Google Scholar 

  18. T.P. Ma, J.-P. Han, Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 23, 386–388 (2002)

    Article  ADS  Google Scholar 

  19. S. Sakai, R. Ilangovan, Metal–ferroelectric–insulator–semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004)

    Article  ADS  Google Scholar 

  20. T.S. Boescke, J. Mueller, D. Braeuhaus, U. Schroeder, U. Boettger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011)

    Article  ADS  Google Scholar 

  21. X. Sang, E.D. Grimley, T. Schenk, U. Schroeder, J.M. LeBeau, Appl. Phys. Lett. 106, 162905 (2015)

    Article  ADS  Google Scholar 

  22. International technology roadmap for semiconductors, emerging research devices (2013) http://www.itrs.net

  23. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, IEEE Spectr. 44, 29 (2007)

    Article  Google Scholar 

  24. F.M. Spiridonov, L.N. Komissarova, A.G. Kocharov, V.I. Spitsyn, Russ. J. Inorg. Chem. 14, 1332 (1969)

    Google Scholar 

  25. C. Richter, T. Schenk, U. Schroeder, T. Mikolajick, Baltic ALD conference, Helsinki (2014)

    Google Scholar 

  26. E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A. P. Graham, T. Melde, U. Schroeder, T. Mikolajick, Thin Solid Films (2012) http://dx.doi.org/10.1016/j.tsf.2012.11.125

  27. M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick, J. Appl. Phys. 118(7), 072006 (2015)

    Google Scholar 

  28. D. Martin, J. Müller, T. Schenk, T.M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Müller, D. Pohl, U. Schroeder, S.V. Kalinin, T. Mikolajick, Adv. Mat. 26(48), 8198–8202 (2014)

    Article  Google Scholar 

  29. U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin, and T. Mikolajick, Jpn. J. Appl. Phys. 53, 08LE02 (2014)

    Google Scholar 

  30. S. Clima, D. Wouters, C. Adelmann, T. Schenk, U. Schroeder, M. Jurczak, M. Pourtois, Appl. Phys. Lett. 104, 092906 (2014)

    Article  ADS  Google Scholar 

  31. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2000)

    Book  Google Scholar 

  32. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, T. Mikolajick, ECS J. Solid State Sci. Technol. 2(4), N69–N72 (2013)

    Article  Google Scholar 

  33. S. Müller, S.R. Summerfelt, J. Müller, U. Schroeder, T. Mikolajick, Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. IEEE Electron Device Lett. 33, 1300–1302 (2012)

    Article  ADS  Google Scholar 

  34. T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, U. Schroeder, ACS Appl. Mater. Interfaces 7(36), 20224–20233 (2015)

    Google Scholar 

  35. M. Pešic, F. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Functional Materials 26(25), 4601–4612 (2015) doi:10.1002/adfm.201600590

    Google Scholar 

  36. J. Knoch, S. Mantl, S. Feste, Chapter on HKMG/FeFET devices, in Nanoelectronics and Information Technology, 3rd edn, ed. by R. Waser (Wiley VCH, 2012)

    Google Scholar 

  37. H.-T. Lue, C.-J. Wu, T.-H. Teng, IEEE Trans. Electron Devices 49, 10 (2002)

    Google Scholar 

  38. L. Van Hai, T. Mitsue, S. Shigeki, Downsizing of ferroelectric-gate field-effect-transistors for ferroelectric-NAND flash memory cells, in Proceedings of the IMW (2011), pp. 1–4

    Google Scholar 

  39. J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlösser, R. Boschke, R. van Bentum, U. Schröder, T. Mikolajick, Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. IEDM Dig. Tech. Pap. 10.8.1–10.8.4 (2013)

    Google Scholar 

  40. E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müller, S. Slesazeck, U. Schroeder, R. Boschke, R. van Bentum, T. Mikolajick, IEEE Trans. Electr. Dev, 61(11) (2014)

    Google Scholar 

  41. J. Müller, J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroeder, T. Mikolajick, Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, in Proceeding of IEEE Symposia on VLSI Technology (2012), pp. 25–26

    Google Scholar 

  42. H. Mulaosmanovic, S. Slesazeck, J. Ocker, M. Pesic, S. Müller, S. Flachowsky, J. Müller, P. Polakowski, J. Paul, S. Jansen, S. Kolodinski, C. Richter, S. Piontek, T. Schenk, A. Kersch, C. Künneth, R. van Bentum, U. Schröder, T. Mikolajick, in IEDM Tech. Pap (2015)

    Google Scholar 

  43. E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Müller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlösser, R. Boschke, R. van Bentum, M. Trentzsch, in Proceedings of the IRPS (2014)

    Google Scholar 

Download references

Acknowledgments

The authors like to thank the FeFET team at Qimonda, Fraunhofer IPMS-CNT, GlobalFoundries, RWTH Aachen, Munich University of Applied Science, and NaMLab for their contribution to the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schroeder, U., Slesazeck, S., Mikolajick, T. (2016). Nonvolatile Field-Effect Transistors Using Ferroelectric Doped HfO2 Films. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0841-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0841-6_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0839-3

  • Online ISBN: 978-94-024-0841-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics