Skip to main content

Stem Cells and Gastric Cancer

  • Chapter
  • First Online:
Gastric Cancer Prewarning and Early Diagnosis System

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 625 Accesses

Abstract

Gastric cancer metastasis and occurrence are closely associated with gastric cancer stem cells. This chapter mainly elaborates the concept of stem cells, summarizes the role of gastric cancer stem cells in the tumor occurrence and development, introduces a simple mechanism of stem cells tropism toward tumor, focuses on the application of stem cells as a carrier in cancer therapeutic, and summarizes security problems of applying stem cells in the tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  2. Ruan J, Shen J, Wang Z, Ji J, Song H, Wang K, et al. Efficient preparation and labeling of human induced pluripotent stem cells by nanotechnology. Int J Nanomedicine. 2011;6:425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  4. Wang TC, Goldenring JR, Dangler C, Ito S, Mueller A, Jeon WOOKYU, et al. Mice lacking secretory phospholipase A 2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology. 1998;114:675–89.

    Google Scholar 

  5. Dongyan C, Dong H. Advances of gastric cancer stem cells. Int J Tumor. 2011;38:51–3.

    Google Scholar 

  6. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med. 2007;13:470–6. doi:10.1038/nm1566.

    Article  CAS  PubMed  Google Scholar 

  7. Takaishi S, Wang TC. Providing AID to p53 mutagenesis. Nat Med. 2007;13:404–6. doi:10.1038/nm0407-404.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9. doi:10.1038/nature05812.

    Article  CAS  PubMed  Google Scholar 

  9. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369–77. doi:10.1016/S0092-8674(01)00328-2.

    Article  CAS  PubMed  Google Scholar 

  10. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, et al. Gastric cancer originating from bone marrow – derived cells. Science. 2004;306:1568–71.

    Article  CAS  PubMed  Google Scholar 

  11. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–99.

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, Olofsson BA, Mwidau A, Escudero M, Flemington E, Azizkhan J, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  Google Scholar 

  14. Singh SK. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  15. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.

    Article  CAS  PubMed  Google Scholar 

  16. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65:9328–37.

    Article  CAS  PubMed  Google Scholar 

  17. Ma S, Chan KW, Hu L, Lee TKW, Wo JYH, Ng IOL, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–56.

    Article  CAS  PubMed  Google Scholar 

  18. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  19. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  21. Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  CAS  Google Scholar 

  23. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SAK, Shimada Y, Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Li C, He F, Cai Y, Yang H. Identification of CD44 + CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol. 2011;137:1679–86.

    Article  CAS  PubMed  Google Scholar 

  26. Zeilstra J, Joosten SPJ, Dokter M, Verwiel E, Spaargaren M, Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68:3655–61.

    Article  CAS  PubMed  Google Scholar 

  27. Trosko JE. From adult stem cells to cancer stem cells Oct-4 gene, cell-cell communication, and hormones during tumor promotion. Ann N Y Acad Sci. 2006;1089:36–58.

    Article  CAS  PubMed  Google Scholar 

  28. Wei Q, Xiaowei Z, Li Z, Fengchun Z. Expression of Oct-4 in gastric carcinoma and its clinical significance. J Shanghai Jiao Tong University (Medical science). 2009;29:733–6.

    Google Scholar 

  29. Liang S, Li C, Zhang C, Chen Y, Xu L, Bao C, et al. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics. 2015;5:970–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tokar EJ, Diwan BA, Waalkes MP. Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect. 2010;118:108–15.

    CAS  PubMed  Google Scholar 

  31. Bomken S, Fiser K, Heidenreich O, Vormoor J. Understanding the cancer stem cell. Br J Cancer. 2010;103:439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lever E, Sheer D. Gastrointestinal stem cells in development and cancer. J Pathol. 2010;220:114–25.

    CAS  PubMed  Google Scholar 

  33. Sciences H, Arab U, Biology C. Defining epithelial cell progenitors in the human oxyntic mucosa. Stem Cells. 2003;21:322–36.

    Article  Google Scholar 

  34. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414:98–104.

    Article  CAS  PubMed  Google Scholar 

  35. Liu G, Zhou C, Xie C, Yang Z, Lv N, Liu G, et al. Recent advances in research of gastric cancer stem cells. World Chinese J Digestol. 2012;20:574–9.

    Google Scholar 

  36. Suárez-Álvarez B, López-Vázquez A, López-Larrea C. Mobilization and homing of hematopoietic stem cells. Adv Exp Med Biol. 2012;741:152–70.

    Article  PubMed  Google Scholar 

  37. Shi M, Li J, Liao L, Chen B, Li B, Chen L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92:897–904.

    Article  PubMed  Google Scholar 

  38. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104:2643–5.

    Article  CAS  PubMed  Google Scholar 

  39. Nie F, Yu X-L, Wang X-G, Tang Y-F, Wang L-L, Ma L. Down-regulation of CacyBP is associated with poor prognosis and the effects on COX-2 expression in breast cancer. Int J Oncol. 2010;37:1261–9.

    CAS  PubMed  Google Scholar 

  40. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE. SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells. 2005;23:1324–32.

    Article  CAS  PubMed  Google Scholar 

  41. Koizumi S, Gu C, Amano S, Yamamoto S, Ihara H, Tokuyama T, et al. Migration of mouse-induced pluripotent stem cells to glioma-conditioned medium is mediated by tumor-associated specific growth factors. Oncol Lett. 2011;2:283–8. doi:10.3892/ol.2011.234.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, et al. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells. 2008;26:1575–86.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia (New York, NY). 2005;7:623–9.

    Article  CAS  Google Scholar 

  44. Ho IAW, Chan KYW, Ng W-H, Guo CM, Hui KM, Cheang P, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009;27:1366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruan J, Song H, Li C, Bao C, Fu H, Wang K, et al. DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells. Theranostics. 2012;2:618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer. 2014;14(10):683–91.

    Google Scholar 

  47. Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med. 2013;19:685–94.

    Article  CAS  PubMed  Google Scholar 

  48. Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim D-S, et al. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells. 2010;28:2217–28.

    Article  PubMed  Google Scholar 

  49. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JAJM, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009;106:4822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi SA, Hwang S-K, Wang K-C, Cho B-K, Phi JH, Lee JY, et al. Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol. 2011;13:61–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kim SW, Kim SJ, Park SH, Yang HG, Kang MC, Choi YW, et al. Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res. 2013;19:415–27.

    Article  CAS  PubMed  Google Scholar 

  52. Martinez-Quintanilla J, Choi SH, Bhere D, Heidari P, He D, Mahmood U, et al. Therapeutic efficacy and fate of bimodal engineered stem cells in mice models of malignant brain tumors. Stem Cells. 2013;15:1706–14.

    Article  CAS  Google Scholar 

  53. Hu YL, Huang B, Zhang TY, Miao PH, Tang GP, Tabata Y, et al. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection. Mol Pharm. 2012;9:2698–709. doi:10.1021/mp300254s.

    Article  CAS  PubMed  Google Scholar 

  54. Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K. A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res. 2011;71:154–63.

    Article  CAS  PubMed  Google Scholar 

  55. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell-delivered S-TRAIL in human gliomas. Cancer Res. 2007;67:8994–9000.

    Article  CAS  PubMed  Google Scholar 

  56. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69:4134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee HJ, Yang H-M, Choi Y-S, Park S-H, Moon S-H, Lee Y-S, et al. A therapeutic strategy for metastatic malignant fibrous histiocytoma through mesenchymal stromal cell-mediated TRAIL production. Ann Surg. 2012;257:1.

    Google Scholar 

  58. Kauer TM, Figueiredo J-L, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci. 2011;15:197–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Reagan MR, Seib FPP, McMillin DW, Sage EKW, Mitsiades CS, Janes SM, et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. J Breast Cancer. 2012;15:273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Van De Water JAJM, Bagci-onder T, Agarwal AS, Wakimoto H, Roovers RC. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proc Natl Acad Sci U S A. 2012;109(41):16642–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Balyasnikova IV, Ferguson SD, Sengupta S, Han Y, Lesniak MS. Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One. 2010;5:e9750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dembinski JL, Wilson SM, Spaeth EL, Studeny M, Samudio I, Roby K, et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy. 2014;15:20–32. doi:10.1016/j.jcyt.2012.10.003.Tumor.

    Article  CAS  Google Scholar 

  63. Ito S, Natsume A, Shimato S, Ohno M, Kato T, Chansakul P, et al. Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther. 2010;17:299–306.

    Article  CAS  PubMed  Google Scholar 

  64. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62:3603–8.

    CAS  PubMed  Google Scholar 

  65. Ponnazhagan S. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther. 2009;15:1446–53.

    Google Scholar 

  66. Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing IFN-α in a mouse melanoma lung metastasis model. Stem Cells. 2008;26:2332–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Manuscript A. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Changes. 2012;29:997–1003.

    Google Scholar 

  68. Kim S-K, Cargioli TG, Machluf M, Yang W, Sun Y, Al-Hashem R, et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:5965–70.

    Article  CAS  Google Scholar 

  69. Kosaka H, Ichikawa T, Kurozumi K, Kambara H, Inoue S, Maruo T, et al. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther. 2012;19:572–8.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao Y, Lam DH, Yang J, Lin J, Tham CK, Ng WH, et al. Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther. 2012;19:189–200.

    Article  CAS  PubMed  Google Scholar 

  71. Aboody KS, Najbauer J, Metz MZ, Apuzzo MD, Annala AJ, Synold TW, et al. Neural stem cell – mediated enzyme/prodrug therapy for glioma : preclinical studies. Sci Transl Med. 2013;5:1–11. doi:10.1126/scitranslmed.3005365.

    Article  CAS  Google Scholar 

  72. Altaner C, Altanerova V, Cihova M, Ondicova K, Rychly B, Baciak L, et al. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer. 2014;134:1458–65.

    Article  CAS  PubMed  Google Scholar 

  73. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006;12:5550–6.

    Article  CAS  PubMed  Google Scholar 

  74. You M-H, Kim W-J, Shim W, Lee S-R, Lee G, Choi S, et al. Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J Gastroenterol Hepatol. 2009;24:1393–400. doi:10.1111/j.1440-1746.2009.05862.x.

    Article  CAS  PubMed  Google Scholar 

  75. Ryu CH, Park KY, Kim SM, Jeong CH, Woo JS, Hou Y, et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun. 2012;421:585–90.

    Article  CAS  PubMed  Google Scholar 

  76. Yang J, Lam D, Goh S, Lee E, Zhao Y. Tumor tropism intravenously injected human‐induced pluripotent stem cell‐derived neural stem cells and their gene therapy application in a metastatic breast cancer. Stem Cells. 2012;30:1021–9. doi:10.1002/22.

    Google Scholar 

  77. Lee WYW, Zhang T, Lau CPY, Wang CC, Chan K-M, Li G. Immortalized human fetal bone marrow-derived mesenchymal stromal cell expressing suicide gene for anti-tumor therapy in vitro and in vivo. Cytotherapy. 2013;15:1484–97.

    Article  CAS  PubMed  Google Scholar 

  78. Kim KY, Kim SU, Leung PCK, Jeung EB, Choi KC. Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci. 2010;101:955–62.

    Article  CAS  PubMed  Google Scholar 

  79. Hong SH, Lee HJ, An J, Lim I, Borlongan C, Aboody KS, et al. Human neural stem cells expressing carboxyl esterase target and inhibit tumor growth of lung cancer brain metastases. Cancer Gene Ther. 2013;20:678–82.

    Article  CAS  PubMed  Google Scholar 

  80. Gutova M, Shackleford GM, Khankaldyyan V, Herrmann KA, Shi X-H, Mittelholtz K, et al. Neural stem cell-mediated CE/CPT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma. Gene Ther. 2013;20:143–50.

    Article  CAS  PubMed  Google Scholar 

  81. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article  CAS  PubMed  Google Scholar 

  82. Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Sindji L, Schiller P, et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials. 2010;31:8393–401.

    Article  CAS  PubMed  Google Scholar 

  83. Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS. Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma? Oncotarget. 2013;4:378–96.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, et al. Silica nanorattle-doxorubicin- anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 2011;5:7462–70.

    Article  CAS  PubMed  Google Scholar 

  85. Duchi S, Sotgiu G, Lucarelli E, Ballestri M, Dozza B, Santi S, et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J Control Release. 2013;168:225–37.

    Article  CAS  PubMed  Google Scholar 

  86. Schnarr K, Mooney R, Weng Y, Zhao D, Garcia E, Armstrong B, et al. Gold nanoparticle-loaded neural stem cells for photothermal ablation of cancer. Adv Healthc Mater. 2013;2:976–82.

    Article  CAS  PubMed  Google Scholar 

  87. Rachakatla RS, Balivada S, Seo GM, Myers CB, Wang H, Samarakoon TN, et al. Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano. 2010;4:7093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ruan J, Ji J, Song H, Qian Q, Wang K, Wang C, et al. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of gastric cancer. Nanoscale Res Lett. 2012;7:309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.

    Article  CAS  PubMed  Google Scholar 

  90. Aghi M, Martuza RL. Oncolytic viral therapies - the clinical experience. Oncogene. 2005;24:7802–16.

    Article  CAS  PubMed  Google Scholar 

  91. García-Castro J, Alemany R, Cascalló M, Martínez-Quintanilla J, Arriero MDM, Lassaletta A, et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther. 2010;17:476–83.

    Article  PubMed  CAS  Google Scholar 

  92. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther. 2006;5:755–66.

    Article  CAS  PubMed  Google Scholar 

  93. Kranzler J, Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Stem cells as delivery vehicles for oncolytic adenoviral virotherapy. Curr Gene Ther. 2009;9:389–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ahmed AU, Rolle CE, Tyler MA, Han Y, Sengupta S, Wainwright DA, et al. Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther J Am Soc Gene Ther. 2010;18:1846–56.

    Article  CAS  Google Scholar 

  95. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat. 2007;105:157–67.

    Article  PubMed  Google Scholar 

  96. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells. 2008;26:831–41.

    Article  CAS  PubMed  Google Scholar 

  97. Manuscript A, Cytokines P, Transplantation P. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 2010;9:1–14.

    Google Scholar 

  98. Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV. A comparative study of neural and mesenchymal stem cell- based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm. 2012;8:1559–72.

    Article  CAS  Google Scholar 

  99. Mader EK, Butler G, Dowdy SC, Mariani A, Knutson KL, Federspiel MJ, et al. Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J Transl Med. 2013;11:20. doi:10.1186/1479-5876-11-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ong HT, Federspiel MJ, Guo CM, Ooi LL, Russell SJ, Peng KW, et al. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol. 2013;59:999–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63. doi:10.1038/nature06188.

    Article  CAS  PubMed  Google Scholar 

  102. Yang T, Zhang X, Wang M, Zhang J, Huang F, Cai J, et al. Activation of mesenchymal stem cells by macrophages prompts human gastric cancer growth through NF-kB pathway. PLoS One. 2014;9:1–11.

    Google Scholar 

  103. Rowan BG, Gimble JM, Sheng M, Anbalagan M, Jones RK, Frazier TP, et al. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS One. 2014;9:e89595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Røsland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69:5331–9.

    Article  PubMed  CAS  Google Scholar 

  105. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:0221–31.

    Article  CAS  Google Scholar 

  106. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19:998–1004. doi:10.1038/nm.3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li G, Walker D, Zhang WR, Kreitzer AC. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2013;11:100–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxiang Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai

About this chapter

Cite this chapter

Yang, M., Cui, D. (2017). Stem Cells and Gastric Cancer. In: Cui, D. (eds) Gastric Cancer Prewarning and Early Diagnosis System. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0951-2_13

Download citation

Publish with us

Policies and ethics