Skip to main content

Prospects for Terahertz Imaging the Human Skin Cancer with the Help of Gold-Nanoparticles-Based Terahertz-to-Infrared Converter

  • Conference paper
  • First Online:
Fundamental and Applied Nano-Electromagnetics II

Abstract

The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon® or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter’s temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode (in vivo) are specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu BB, Nuss MC (1995) Opt Lett 20(16):1716. https://doi.org/10.1364/OL.20.001716. http://ol.osa.org/abstract.cfm?URI=ol-20-16-1716

    Article  ADS  Google Scholar 

  2. Ross KFA, Gordon RE (1982) J Microsc 128(1):7. https://doi.org/10.1111/j.1365-2818.1982.tb00433.x

    Article  Google Scholar 

  3. Chen JH, Avram HE, Crooks LE, Arakawa M, Kaufman L, Brito AC (1992) Radiology 184(2):427. PMID: 1620841. https://doi.org/10.1148/radiology.184.2.1620841

    Article  Google Scholar 

  4. Berry E, Walker GC, Fitzgerald AJ, Zinov’ev NN, Chamberlain M, Smye SW, Miles RE, Smith MA (2003) J Laser Appl 15(3):192. https://doi.org/10.2351/1.1585079. http://scitation.aip.org/content/lia/journal/jla/15/3/10.2351/1.1585079

    Article  ADS  Google Scholar 

  5. Rønne C, Thrane L, Åstrand PO, Wallqvist A, Mikkelsen KV, Keiding SR (1997) J Chem Phys 107(14):5319. https://doi.org/10.1063/1.474242. http://scitation.aip.org/content/aip/journal/jcp/107/14/10.1063/1.474242

    Article  ADS  Google Scholar 

  6. Son JH (2009) J Appl Phys 105(10):102033. https://doi.org/10.1063/1.3116140

    Article  ADS  Google Scholar 

  7. Oh SJ, Maeng I, Shin HJ, Lee J, Kang J, Haam S, Huh YM, Suck Suh J, Hiuk Son J (2008) In: 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, pp 1–2. https://doi.org/10.1109/ICIMW.2008.4665813

  8. Oh SJ, Kang J, Maeng I, Suh JS, Huh YM, Haam S, Son JH (2009) Opt Express 17(5):3469. https://doi.org/10.1364/OE.17.003469. http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3469

    Article  ADS  Google Scholar 

  9. Oh SJ, Choi J, Maeng I, Suh JS, Huh YM, Haam S, Son JH (2010) In: 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM), p 52. https://doi.org/10.1109/PHOTWTM.2010.5421967

  10. Oh SJ, Choi J, Maeng I, Park JY, Lee K, Huh YM, Suh JS, Haam S, Son JH (2011) Opt Express 19(5):4009. https://doi.org/10.1364/OE.19.004009. http://www.opticsexpress.org/abstract.cfm?URI=oe-19-5-4009

    Article  ADS  Google Scholar 

  11. Oh SJ, Huh YM, Suh JS, Choi J, Haam S, Son JH (2012) J Infrared Millimeter Terahertz Waves 33(1):74. https://doi.org/10.1007/s10762-011-9847-9.

    Article  Google Scholar 

  12. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Nano Lett 5(4):709. https://doi.org/10.1021/nl050127s

    Article  ADS  Google Scholar 

  13. El-Sayed IH, Huang X, El-Sayed MA (2006) Cancer Lett 239(1):129. https://doi.org/10.1016/j.canlet.2005.07.035. http://www.sciencedirect.com/science/article/pii/S0304383505007378

    Article  Google Scholar 

  14. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128(6):2115. https://doi.org/10.1021/ja057254a

    Article  Google Scholar 

  15. Woodward RM, Wallace VP, Cole BE, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002a) In: Proceedings of the SPIE 4625, Clinical Diagnostic Systems: Technologies and Instrumentation, p 160. https://doi.org/10.1117/12.469785

    Google Scholar 

  16. Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002b) Phys Med Biol 47(21):3853. http://stacks.iop.org/0031-9155/47/i=21/a=325

    Article  Google Scholar 

  17. Woodward RM, Wallace VP, Pye RJ, Cole BE, Arnone DD, Linfield EH, Pepper M (2003) J Invest Dermatol 120(1):72. https://doi.org/10.1046/j.1523-1747.2003.12013.x

    Article  Google Scholar 

  18. Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD (2004) Br J Dermatol 151(2):424. https://doi.org/10.1111/j.1365-2133.2004.06129.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2133.2004.06129.x

    Article  Google Scholar 

  19. Wallace VP, Fitzgerald AJ, Pickwell E, Pye RJ, Taday PF, Flanagan N, Ha T (2006) Appl Spectrosc 60(10):1127. https://doi.org/10.1366/000370206778664635

    Article  ADS  Google Scholar 

  20. Pickwell E, Wallace VP (2006) J Phys D Appl Phys 39(17):R301. http://stacks.iop.org/0022-3727/39/i=17/a=R01

    Article  ADS  Google Scholar 

  21. Infrared Cameras Inc. (2018) Mirage 640 P-series | fixed/process control calibrated thermal camera with temperature measurement. https://infraredcameras.com/thermal-infrared-products/mirage-640-p-series/. Accessed 6 Aug 2018

  22. FLIR A6700sc MWIR (2018) Science-grade MWIR INSB camera. https://www.flir.com/products/a6700sc-mwir/. Accessed 6 Aug 2018

  23. Moldosanov K, Postnikov A (2016) Beilstein J Nanotechnol 7:983. https://doi.org/10.3762/bjnano.7.90

    Article  Google Scholar 

  24. Postnikov AV, Moldosanov KA (2018) Nanotechnology 29(28):285704. http://stacks.iop.org/0957-4484/29/i=28/a=285704

    Article  Google Scholar 

  25. TYDEX® THz materials (2018). http://www.tydexoptics.com/products/thz_optics/thz_materials/. Accessed 6 Aug 2018

  26. Postnikov A, Moldosanov K (2016) In: Maffucci A, Maksimenko SA (eds) Fundamental and applied nano-electromagnetics. The NATO science for peace and security programme, Series B: physics and biophysics. Springer, Dordrecht, pp 171–201. https://doi.org/10.1007/978-94-017-7478-9. Proceedings of the NATO Advanced Research Workshop on Fundamental and Applied Electromagnetics, Minsk, Belarus, 25–27 May 2015

    Google Scholar 

  27. TYDEX® THz lenses (2018). http://www.tydexoptics.com/products/thz_optics/thz_lens/. Accessed 6 Aug 2018

  28. Kubo R (1962) J Phys Soc Jpn 17(6):975. https://doi.org/10.1143/JPSJ.17.975.

    Article  ADS  Google Scholar 

  29. Kubo R (1977) J Phys Colloq 38(C2):C2. https://doi.org/10.1051/jphyscol:1977214. https://hal.archives-ouvertes.fr/jpa-00217053

    Article  Google Scholar 

  30. Moldosanov K, Postnikov A (2018) On the plausible nature of the size effect in heterogeneous catalysis on gold nanoparticles. https://arxiv.org/abs/1808.10607

  31. Zhang ZM (2007) Nano/microscale heat transfer. McGraw Hill professional. McGraw-Hill Education. https://books.google.fr/books?id=64ygtm0HWtcC

    Google Scholar 

  32. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College. https://books.google.fr/books?id=FRZRAAAAMAAJ

    MATH  Google Scholar 

  33. Lynn JW, Smith HG, Nicklow RM (1973) Phys Rev B 8:3493. https://doi.org/10.1103/PhysRevB.8.3493. http://link.aps.org/doi/10.1103/PhysRevB.8.3493

    Article  ADS  Google Scholar 

  34. Moldosanov KA, Lelevkin VM, Kozlov PV, Kaveev AK (2012) J Nanophotonics 6:061716. https://doi.org/10.1117/1.JNP.6.061716

    Article  ADS  Google Scholar 

  35. Gafner YY, Gafner SL, Zamulin S, Redel LV, Baidyshev VS (2015) Physics of Metals and Metallography 116(6):568. https://doi.org/10.1134/S0031918X15040055. Original Russian text published in: Fizika Metallov i Metallovedenie 116(6):602–609, 2015

    Article  ADS  Google Scholar 

  36. Stojanovic N, Maithripala DHS, Berg JM, Holtz M (2010) Phys Rev B 82:075418. https://doi.org/10.1103/PhysRevB.82.075418. https://link.aps.org/doi/10.1103/PhysRevB.82.075418

  37. Huang CL, Feng YH, Zhang XX, Li J, Wang G, Chou AH (2013) Acta Physica Sinica 62(2):026501. https://doi.org/10.7498/aps.62.026501

    Google Scholar 

  38. Postnikov AV, Moldosanov KA (2012) J Nanophotonics 6:061709. https://doi.org/10.1117/1.JNP.6.061709.

    Article  ADS  Google Scholar 

  39. Christensen NE (1976) Phys Rev B 14:3446. https://doi.org/10.1103/PhysRevB.14.3446. https://link.aps.org/doi/10.1103/PhysRevB.14.3446

    Article  ADS  Google Scholar 

  40. Okamoto H, Massalski TB (1985) Bull Alloy Phase Diagr 6(3):229. https://doi.org/10.1007/BF02880404

    Article  Google Scholar 

  41. Lesiak B, Jozwik A (2004) Surf Interface Anal 36(8):793. https://doi.org/10.1002/sia.1766. https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.1766

    Article  Google Scholar 

  42. Nahm TU, Jung R, Kim JY, Park WG, Oh SJ, Park JH, Allen JW, Chung SM, Lee YS, Whang CN (1998) Phys Rev B 58:9817. https://doi.org/10.1103/PhysRevB.58.9817. https://link.aps.org/doi/10.1103/PhysRevB.58.9817

    Article  ADS  Google Scholar 

  43. Oh SJ, Nahm TU (1996) J Electron Spectrosc Relat Phenom 78:43. https://doi.org/10.1016/S0368-2048(96)80023-5. http://www.sciencedirect.com/science/article/pii/S0368204896800235

    Article  Google Scholar 

  44. Darling AS (1972) Gold Bull 5(4):74. https://doi.org/10.1007/BF03215168

    Article  Google Scholar 

  45. Rowland T, Cusack NE, Ross RG (1974) J Phys F Metal Phys 4(12):2189. http://stacks.iop.org/0305-4608/4/i=12/a=015

    Article  ADS  Google Scholar 

  46. Gallerano GP, Biedron S (2004) In Proceedings of the 2004 FEL Conference, p 216. http://accelconf.web.cern.ch/AccelConf/f04/papers/FRBIS02/FRBIS02.PDF

  47. Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN (2011) Appl Phys Lett 99(2):023501. https://doi.org/10.1063/1.3607474

    Article  ADS  Google Scholar 

  48. Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN, Arzhannikov AV (2011) Tech Mess 78(11):526. doi: 10.1524/teme.2011.0208. https://doi.org/10.1524/teme.2011.0208

    Article  Google Scholar 

  49. Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN (2012) Prog Electromagn Res 122:93. https://doi.org/10.2528/PIER11101401. http://www.jpier.org/PIER/pier.php?paper=11101401

    Article  Google Scholar 

  50. Kuznetsov SA, Paulish AG, Gelfand AV, Astafiev MA, Arzhannikov AV, Fedorinin VN, Thumm MKA (2012) Proc SPIE 8423:8423. https://doi.org/10.1117/12.922728

    ADS  Google Scholar 

  51. Zagubisalo PS, Paulish AG, Kuznetsov SA (2014) J Phys Conf Ser 490(1):012174. http://stacks.iop.org/1742-6596/490/i=1/a=012174

    Article  Google Scholar 

  52. Paulish AG, Kuznetsov SA (2016) Tech Phys Lett 42(11):1130. https://doi.org/10.1134/S1063785016110195. Published in: Pis’ma v Zhurnal Tekhnicheskoi Fiziki 42(22):64–71, 2016

    Article  ADS  Google Scholar 

  53. Kuznetsov SA, Paulish AG, Navarro-Cía M, Arzhannikov AV (2016) Sci Rep 6:21079. https://doi.org/10.1038/srep21079. https://www.nature.com/articles/srep21079

  54. DALI D900-series – cooled FPA module (2018). http://www.dali-tech.us/products/d900-series-68.html. Accessed 6 Aug 2018

    Google Scholar 

  55. Sofradir DAPHNIS-HD MWIR detector (2018). http://www.sofradir.com/product/daphnis-hd-mw/. Accessed 6 Aug 2018

  56. Moldosanov KA, Postnikov AV (2018) Converter of terahertz vibrations into terahertz electromagnetic radiation. Russian patent RU 2650343. Priority: 20.03.2017, date of publication: 11.04.2018 (Bull. 11). http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2650343&TypeFile=html (2017). https://patents.google.com/patent/RU2650343C1/en. Accessed August 7, 2018

  57. Moldosanov KA, Lelevkin VM, Kairyev NZh, Postnikov AV (2016) Terahertz-infrared converter for visualiation of sources of terahertz radiation. Russian patent RU 2642119. Priority: 21.06.2016, date of publication: 24.01.2018 (Bull. 3). http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2642119&TypeFile=html. https://patents.google.com/patent/RU2642119C2/en. Accessed Aug 7 2018

  58. Moldosanov K, Postnikov AV (2018) Source of terahertz radiation. Russian patent RU 2622093. Priority: 13.05.2016, date of publication: 09.06.2017 (Bull. 16). http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2622093&TypeFile=html (2016). https://patents.google.com/patent/RU2622093C1/en. Accessed 7 Aug 2018

  59. Moldosanov KA, Postnikov AV, Lelevkin VM, Kairyev NJ (2017) Ferroelectrics 509(1):158 (2017). https://doi.org/10.1080/00150193.2017.1296344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Postnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Postnikov, A.V., Moldosanov, K.A., Kairyev, N.J., Lelevkin, V.M. (2019). Prospects for Terahertz Imaging the Human Skin Cancer with the Help of Gold-Nanoparticles-Based Terahertz-to-Infrared Converter. In: Maffucci, A., Maksimenko, S. (eds) Fundamental and Applied Nano-Electromagnetics II. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1687-9_9

Download citation

Publish with us

Policies and ethics