Skip to main content

Bioengineering and Molecular Manipulation of Salicylic Acid Signaling System to Activate Plant Immune Responses for Crop Disease Management

  • Chapter
  • First Online:
Plant Innate Immunity Signals and Signaling Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plant innate immune system provides potential weapons to the plants for fighting against pathogens. However, specific signals are needed to activate the system. Salicylic acid (SA) is the most important endogenous signal molecule which triggers the plant defense system. Plants do not have much endogenous SA. Increased synthesis and accumulation of salicylic acid in plants result in increased expression of defense genes. It has been shown that by increasing the SA content, defense genes can be activated and diseases can be controlled. Several molecular technologies have been developed to increase the biosynthesis of SA by engineering genes encoding enzymes involved in SA biosynthesis. Isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL) are the key enzymes involved in biosynthesis of SA. The genes encoding ICS and IPL cloned from two different bacteria have been exploited to develop disease-resistant plants by triggering SA accumulation. Transgenic tobacco plants expressing both the ICS and IPL genes show high increase in SA accumulation and these plants show enhanced disease resistance against Tobacco mosaic virus and the powdery mildew pathogen Oidium lycopersici. The regulatory protein PAD4 is known to activate SID1 and SID2. SID2 is an isochorismate synthase that is involved in SA biosynthesis and SID1 encodes a protein, which transports precursors for SA biosynthesis. Transgenic wheat plants overexpressing the Arabidopsis PAD4 coding sequence have been developed and these transgenic plants show accumulation of SA and resistance against the Fusarium head blight (FHB) pathogen Fusarium graminearum. A RNA-binding protein (RBP) gene from Arabidopsis thaliana, AtRBP-DR1 has been exploited for developing disease-resistant plants by inducing SA biosynthesis. A camodulin binding protein, CBP60g, has been exploited to develop disease resistant plants by activating SA biosynthesis. Transgenic Arabidopsis plants overexpressing CBP60g gene have been developed and these plants show elevated SA accumulation and enhanced resistance against diseases. Several transcription factors are known to take part in the regulation of SA signaling pathway and genes encoding these transcription factors have been exploited to develop disease-resistant plants. Ubiquitin- and proteasome-mediated degradation of proteins plays an important role in plant defense signaling system. E3 ubiquitin ligases play a key role in the ubiquitin-proteasome system. Ubiquitin-proteasome pathway has been manipulated to trigger SA signaling system for crop disease management. NPR1 gene is a master regulator of the SA-mediated induction of systemic acquired resistance (SAR). NPR1 directly binds SA and activates SA signaling system. NPR1 gene cloned from Arabidopsis thaliana has been used to develop several transgenic crop plants including rice, tomato, citrus, carrot, and strawberry. NPR1-like genes isolated from rice, grapevine, apple and tobacco have also been utilized to develop disease-resistant transgenic plants. NPR1 gene expression can be enhanced by treatment with some synthetic chemicals. BTH (benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester) is the most successfully developed commercial compound to activate plant innate immune system by enhancing NPR1 gene expression. BTH treatment induces NPR1 mRNA accumulation by several-fold. BTH may also contribute to the establishment of SAR through an interaction with methyl salicylate esterase that is critical for the perception of defense-inducing signals in systemic tissues. Treatment of plants with BTH, which triggers SA signaling, causes the induction of a unique physiological state called “priming”. BTH induces histone modifications, which may be involved in the gene priming.The expression of the WRKY genes is enhanced in BTH-treated plants. BTH triggers NPR1-dependent chromatin modification on WRKY promoters to activate defense gene expression. BTH activates SA-dependent SAR in many crops and has been found to be useful in management of several crop diseases caused by oomyctes, fungi, bacteria, and viruses. N-cyanomethyl-2-chloroisonicotinamide (NCI) is another potential chemical that activates NPR1-dependent SA signaling system. NCI activates SAR by stimulating the site between SA and NPR1. 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) activates NPR1 in SA signaling pathway. CMPA acts downstream of SA accumulation and acts in the SA signaling pathway between SA production and NPR1 activity. It protects rice from infection by rice blast pathogen Magnaporthe oryzae and bacterial blight pathogen Xanthomonas oryzae pv. oryzae It enhances resistance of tobacco to Pseudomonas syringae pv. tabaci and Oidium sp. Tiadinil (3,4-dichloro-N-(2-cyanophenyl)-1,2-thiazole-5-carboxamide) is another potential chemical, which triggers SA signaling pathway by activating NPR1 gene expression. Tiadinil induces resistance against various fungal, bacterial, and viral diseases in tobacco and is practically used to control rice blast disease. SV-03 is a metabolite of Tiadinil. It stimulates SA signaling pathway downstream of SA production and triggers resistance against various viral, bacterial and fungal pathogens. Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide) and its metabolite 1,2-benzisothiazole-3 (2H)-one 1,1-dioxide (BIT, saccharin) are potential plant defense activators and both of them are known to induce SA accumulation and activate SA signaling system. Probenazole/BIT intervenes in SA signaling system at SA accumulation stage as well as at NPR1 stage to trigger resistance against pathogens. The nonprotein amino acid β-aminobutyric acid (BABA) induces broad-spectrum resistance in a range of crops. BABA induces priming in the SAR induction pathway. The descendants of primed plants exhibit next-generation systemic acquired resistance. SA signaling system can also be activated using plant-derived products. Azelaic acid, a natural compound found in several plants is a signal molecule triggering plant defense responses. Azelaic acid does not directly induce defense responses, but confers on the plants the ability to mount a faster and stronger defense response if and when the plant is attacked again. It does this by increasing the production of SA. Azelaic acid stimulates the production of AZ11, a protein which helps prime the plant to build up its immunity by generating additional SA. 3-acetonyl-3-hydroxyoxindole (AHO), isolated from the extracts of Strobilanthes cusia is an activator of SA signaling system. When tobacco plants are treated with AHO, SA accumulates in the leaf tissues and induces disease resistance. An oligosaccharide product obtained from burdock (Arctium lappa) plant triggers production of methyl salicylate involved in SA signaling system and confers disease resistance. N-Acyl-L-homoserine lactones (AHLs)–producing bacteria, which induce SA-dependent systemic resistance, have been shown to be potential tools for management of crop diseases. Some of the rhizobacterial strains activate the plant innate immune system by triggering SA signaling system and they are widely used for management of crop diseases. SA signaling system can be activated by some MAMPs (for Microbe-associated molecular patterns) for effective crop disease management. The MAMP yeast elicitor treatment activates SA signaling system and induces resistance against oomycete, fungal, and bacterial pathogens in many crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Soltani N, Cuppels D, Lazarovits G (2001) Reduction of bacterial spot of tomato with foliar applications of ammonium lignosulfonate and potassium phosphate. Phytopathology 91:S1

    Article  Google Scholar 

  • Agostini JP, Bushong PM, Timmer LW (2003) Greenhouse evaluation of products that induce host resistance for control of scab, melanose, and Alternaria brown spot of citrus. Plant Dis 87:69–74

    Article  CAS  PubMed  Google Scholar 

  • Ahn J-P, Kim S, Kang S, Suh S-C, Lee Y-H (2005) Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology 95:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Kragelund BB, Olsen AN, Larsen FH, Chua NH, Poulsen FM, Skriver K (2004) Structure and biochemical function of a prototypical Arabidopsis U-box domain. J Biol Chem 279:40053–40061

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8(1):e1002448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif M, Selvi BR, Kundu TK (2010) Lysine acetylation: the tale of a modification from transcription regulation to metabolism. ChemBioChem 11:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Bai W, Chern M, Ruan D, Canlas PE, Sze-To WH, Ronald PC (2011) Enhanced disease resistance and hypersensitivity to BTH by introduction of an NH1/OsNPR1 paralog. Plant Biotech J 9:205–215

    Article  CAS  Google Scholar 

  • Becker F, Buschfeld E, Schell J, Bachmair A (1993) Altered response to viral infection by tobacco plants perturbed in ubiquitin system. Plant J 3:875–881

    Article  Google Scholar 

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  PubMed  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender J (2004) Chromatin-based silencing mechanisms. Curr Opin Plant Biol 7:521–526

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Bélanger RR (1998) Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiol 118:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertona A, Liguori R, Bassi R, Fili V, Filippi G, Saporiti M, Casola F (2000) Activation of natural defense with CGA 245704: a tool for self-defense of plants against pathogens. Atti, Giornate fitopatologiche, Perugia, 16–20 aprile, 2000, vol 2. Italy, Bologna, pp 27–32

    Google Scholar 

  • Besser K, Jarosch B, Langen G, Kogel KH (2000) Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Mol Plant Pathol 1:277–286

    Article  CAS  PubMed  Google Scholar 

  • Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casals C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigirimana J, Höfte M (2002) Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30:159–168

    Article  Google Scholar 

  • Bokshi AI, Morris SC, Deverall BJ (2003) Effects of benzothiadiazole and acetylsalicylic acid on β-1,3 glucanase activity and disease resistance in potato. Plant Pathol 52:22–27

    Article  CAS  Google Scholar 

  • Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence- structure family. Curr Opin Struct Biol 55:395–401

    Google Scholar 

  • Boscariol-Camargo RL, Takita MA, Machado MA (2016) Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2. Trop Plant Pathol 41:341–346

    Article  Google Scholar 

  • Boshoff M, Kotze JM, Korsten L (1998) Control of bacterial black spot in mango. Yearb South Africa Mango Growers Assoc 18:36–39

    Google Scholar 

  • Brading PA, Hammond-Kosack KE, Parr A, Jones JDG (2000). Salicylic acid is not required for Cf-2 and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J 23:305–318

    Google Scholar 

  • Britton LM, Gonzales-Cope M, Zee BM, Garcia BA (2011) Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 8:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaurio R, Scarponi L, Ferrara M, Sidoti P, Bertona A (2002) Induction of systemic acquired resistance in pepper plants by acibenzolar-S-methyl against bacterial disease. Eur J Plant Pathol 108:41–49

    Article  CAS  Google Scholar 

  • Camañes G, Pastor V, Cerezo M, Garcia-Andrade J, Vicedo B, Garcia-Agustin P, Flors V (2012) A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses. Plant Physiol 158:1054–1066

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke J, Volko S, Dong X (1997) The Arabidopsis npr1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Chanda B, Xia Y, Mandal MK, Yu K, Sekine K-T, Gao Q-M, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar B, Umesha S, Naveen Kumar HN (2017) Proteomic analysis of salicylic acid enhanced disease resistance in bacterial wilt affected chilli (Capsicum annuum) crop. Physiol Mol Plant Pathol 98:85–96

    Article  CAS  Google Scholar 

  • Chaturvedi R, Venables B, Petros RA, Nalam V, Li M, Wang X, Takemoto LJ, Shah J (2012) An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J 71:161–172

    Article  CAS  PubMed  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  CAS  PubMed  Google Scholar 

  • Chen ZX, Ricigliano JW, Klessig DF (1993) Purification and characterization of a soluble salicylic acid-binding protein that may function in signal from tobacco. Proc Natl Acad Sci USA 90:9533–9537

    Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Hu Y, Zhou DX (2011) Epigenetic gene regulation by plant jumonji group of histone demethylase. Biochim Biophys Acta 1809:421–426

    Article  CAS  PubMed  Google Scholar 

  • Chen X-K, Zhang J-Y, Zhang Z, Du B-B, Qu S-C (2012) Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 39:8083–8089

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167:1087–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chern M-S, Fitzgerald H, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113

    Article  CAS  PubMed  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact 18:511–520

    Article  CAS  PubMed  Google Scholar 

  • Chern M, Canlas PE, Ronald PC (2008) Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repressive domain. Mol Plant 1:552–559

    Article  CAS  PubMed  Google Scholar 

  • Cheung M-Y, Zeng N-Y, Tong S-W, Li FW-Y, Zhao K-J, Zhang Q, Sun SS-M, Lam H-M (2007) Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58:4147–4159

    Article  CAS  PubMed  Google Scholar 

  • Cohen YR (2002) β-aminobutyric acid-induced resistance against plant pathogens. Plant Dis 86:448–457

    Article  CAS  PubMed  Google Scholar 

  • Colson-Hanks ES, Deverall BJ (2000) Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to Alternaria leaf spot in cotton. Plant Pathol 49:171–178

    Article  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Klessig DF, Bachmair A (1998) Tobacco plants perturbed in the ubiquitin-dependent protein degradation system accumulate callose, salicylic acid, and pathogenesis-related protein 1. Plant Cell Rep 17:876–880

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Cueto-Ginzo AI, Serrano L, Bostock RM, Ferrio JP, Rodriguez R, Arcal L, Achon MA, Falcioni T, Luzuriaga WP, Medina V (2016) Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiol Mol Plant Pathol 93:1–11

    Article  CAS  Google Scholar 

  • De Meyer G, Audenaert K, Höfte M (1999) P. aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a gene-expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4(155):1–12

    Google Scholar 

  • Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D et al (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desveaux D, Subramaniam R, Després C, Mess J-N, Lévesque C, Fobert PR, Dangl JL, Brisson N (2004) A ‘Whirly’ transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240

    Article  CAS  PubMed  Google Scholar 

  • Ding L-N, Yang G-X, Yang R-Y, Cao J, Zhou Y (2016) Investigating interactions of salicylic acid and jasmonic acid signaling pathways in monocots wheat. Physiol Mol Plant Pathol 93:67–74

    Article  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Klessig DF (1997) Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol 113:1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Zhang L, Liu L, Tang X-F, Yang W-J, Wu Y-M, Huang Y-B, Tang Y-X (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow) 74:1–11

    Article  CAS  Google Scholar 

  • Du Q, Zhu W, Zhao Z, Qian X, Xu Y (2012) Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications. J Agric Food Chem 60:346–353

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS ONE 10(9):e0137134. https://doi.org/10.1371/journal.pone.0137134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep 3:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, Schenk PM, Kazan K (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australasian Plant Pathol 35:581–591

    Article  CAS  Google Scholar 

  • Elmer WH (2006) Effects of acibenzolar-S-methyl on the suppression of Fusarium wilt of cyclamen. Cell 25:671–676

    CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Weighman VJ, Chang H-S, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl JL (2004) Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol 135:1129–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 146:1421–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J-X, Cao L, Li J, Duan C-J, Xue-M Luo, Le N, Wei H, Liang S, Chu C, Pan Q, Tang J-L (2011) Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. Eur J Plant Pathol 131:221–235

    Article  CAS  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald HA, Chern M-S, Navarre R, Ronald PC (2004) Overexpression of (At) NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17:140–151

    Article  CAS  PubMed  Google Scholar 

  • Flors V, Ton J, van Doorn R, Garcia-Agustin P, Mauch-Mani B (2008) Interplay between JA, SA, and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92

    Article  CAS  PubMed  Google Scholar 

  • Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich L, Lawton K, Reuss W, Masner P, Specker N, Gut Rella M, Meier B, Dincher S, Staub T, Uknes S, Metraux JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willitis M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant-Microbe Interact 14:1114–1124

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288

    Article  CAS  PubMed  Google Scholar 

  • Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and Gm SGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant-Microbe Interact 22:86–95

    Article  CAS  PubMed  Google Scholar 

  • Fu L-J, Shi K, Gu M, Zhou Y-H, Dong D-K, Liang W-S, Song F-M, Yu J-Q (2010) Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction. Mol Plant-Microbe Interact 23:39–48

    Article  PubMed  CAS  Google Scholar 

  • Fu ZQ, Yang S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisaki K, Ishikawa M (2008) Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication. Virology 380:402–411

    Article  CAS  PubMed  Google Scholar 

  • Gaille C, Kast P, Hass D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J Biol Chem 277:21768–21775

    Article  CAS  PubMed  Google Scholar 

  • Gaille C, Reimmann C, Haas D (2003) Isochrorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J Biol Chem 278:16893–16898

    Article  CAS  PubMed  Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Métraux J-P (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of the Arabidopsis. Plant Physiol 147:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge XC, Song FM, Chen YY, Zheng Z (2001) Activities of defense-related enzymes induced by benzothiadiazole in rice to blast fungus. Chinese Rice Research Newsletter 9:10–11

    Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:(72/1)

    Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  CAS  PubMed  Google Scholar 

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengry G, Beckhove U, Kogel K-H, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: Evidence for inhibition of jasmonic acid signaling by SA. Mol Plant-Microbe Interact 13:503–511

    Article  CAS  PubMed  Google Scholar 

  • Hamiduzzaman MM, Jakeb G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant-Microbe Interact 18:819–829

    Article  CAS  PubMed  Google Scholar 

  • He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    Article  CAS  PubMed  Google Scholar 

  • Hermann M, Maier F, Masroor A, Hirth S, Pfitzner AJ, Pfitzner UM (2013) The Arabidopsis NIMIN proteins affect NPR1 differentially. Front Plant Sci 4:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DL (2002) Control of gummy blight of watermelon with plant defense activators combined with fungicides. Proc Fla State Hort Soc 115:183–186

    Google Scholar 

  • Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185–188:288–297

    Article  CAS  Google Scholar 

  • Huh SU, Paek K-H (2013a) Plant RNA binding proteins for control of RNA virus infection. Front Physiol 4:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Huh SU, Paek K-H (2013b) Role of Arabidopsis Pumilio RNA binding protein 5 in virus infection. Plant Signal Behav 8:e23975

    Article  CAS  Google Scholar 

  • Huh SU, Kim MJ, Paek KH (2013) Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci USA 110:779–784

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kárenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai T, Seo S, Mitsuhara I, Ohashi Y (2007) Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol 48:915–924

    Article  CAS  PubMed  Google Scholar 

  • Iwata M, Suzuki Y, Watanabe T, Mase S, Sekizawa Y (1980) Effect of probenazole on the activities of enzymes related to the resistance reaction in rice plant. Ann Phytopathol Soc Japan 46:297–306

    Article  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jaubert M, Bhattacharjee S, Mello AF, Perry KL, Moffett P (2011) ARGONAUTE2 mediates RNA silencing anti-viral defenses against Potato virus X in Arabidopsis. Plant Physiol 156:1556–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen BD, Latundedada AO, Hudson D, Lucas JA (1998) Protection of Brassica seedlings against downy mildew and damping-off by seed treatment with CGA-245704, an activator of systemic acquired resistance. Pestic Sci 52:63–69

    Article  CAS  Google Scholar 

  • Ji L-H, Ding S-W (2001) The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant-Microbe Interact 14:715–724

    Article  CAS  PubMed  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96:13583–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Mhatre A, Arias J (2008) NPR1 preferentially binds to the DNA-inactive form of Arabidopsis TGA2. Biochim Biophys Acta 1779:583–589

    Article  CAS  PubMed  Google Scholar 

  • Joshi SG, Kumar V, Janga MR. Bell AA, Rathore KS (2017) Response of AtNPR1-expressing cotton plants to Fusarium oxyspoum f. sp. vasinfectum isolates. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-016-0411

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Article  PubMed  CAS  Google Scholar 

  • Kesarwani M, Joo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Delaney TP (2002) Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14:1469–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-Y, Kim Y-C, Seong ES, Lee Y-H, Park M, Choi D (2007) The chili pepper CaATL1: an AT-hook motif-containing transcription factor implicated in defence responses against pathogens. Mol Plant Pathol 8:761–771

    Article  CAS  PubMed  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol 8:700–710

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4:21–33

    Article  CAS  PubMed  Google Scholar 

  • Klessig DF, Tian M, Choi W (2016) Multiple targets of salicylic acid and the derivatives in plants and animals. Front Immunol 7(206). https://doi.org/10.3389/fimmu2016.00206

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo YJ, Kim MA, Kim EH, Song JT, Jung CK, Moon JK, Kim JH, Seo HS, Song SL, Kim JK, Lee JS, Cheong JJ, Choi YD (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Kuai X, MacLeod BJ, Desprѐs C (2015) Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00235

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistić O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Klessig DF (2008) The search for the salicylic acid receptor led to discovery of the SAR signal receptor. Plant Signal Behav 3:691–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Gustafsson C, Klessig DF (2006) Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants. Plant J 45:863–868

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Joshi S, Bell A, Rathore K (2013) Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Res 22:359–368

    Article  PubMed  CAS  Google Scholar 

  • Kwon S, Hamada K, Matsuyama A, Yasuda M, Nakashita H, Yamakawa T (2009) Biotic and abiotic stresses induce AbSAMT1, encoding S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, in Atropa belladonna. Plant Biotechnol 26:207–215

    Article  CAS  Google Scholar 

  • Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8:863–870

    Article  CAS  PubMed  Google Scholar 

  • Lawton KA, Friedrich I, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    Article  CAS  PubMed  Google Scholar 

  • Le Henanff G, Farine S, Keiffer-Mazet F, Miclot A-S, Heitz T, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405–417

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kang H (2016) Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol Cells 39:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-I, León J, Raskin I (1995) Biosynthesis and mechanism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156:2011–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Kim DS, Hwang BK (2012a) The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. Plant J 72:35–248

    Google Scholar 

  • Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY, Kim YC, Mcspadden Gardner B, Kang H (2012b) Different roles of glycine-rich RNA binding protein 7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and Tobacco mosaic virus. Plant Physiol Biochem 60:46–52

    Article  CAS  PubMed  Google Scholar 

  • Lee H-J, Park Y-J, Seo PJ, Kim J-H, Sim H-J, Kim S-G, Park CM (2015) Systemic immunity requires SnRK2.8-mediated nuclear Import of NPR1 in Arabidopsis. Plant Cell 27:3425–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    Google Scholar 

  • Leskovar DI, Kolenda K (2002) Strobilurin + acibenzolar-S-methyl controls white rust without inducing leaf chlorosis in spinach. Ann Appl Biol 140:171–175

    Article  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YM, Zhang ZK, Jia YT, Shen YM, He HM, Fang RX, Chen XY, Hao XJ (2008) 3-acetonyl-3-hydroxy-oxindole: a new inducer of systemic acquired resistance in plants. Plant Biotech J 6:301–308

    Article  CAS  Google Scholar 

  • Li W, Zhong S, Li G, Li Q, Mao B, Deng Y, Zhang H, Zeng L, Song F, He Z (2011) Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Res 21:23

    Google Scholar 

  • Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581

    Article  CAS  PubMed  Google Scholar 

  • Lin YZ, Chen HY, Kao R, Chang SP, Chang SJ, Lai EM (2008) Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69:715–728

    Article  CAS  PubMed  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant-Microbe Interact 20:420–429

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Serino G, Deng X-W, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14:1483–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P-P, Yang Y, Pichersky E, Klessig DF (2010) Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. Mol Plant-Microbe Interact 23:82–90

    Article  CAS  PubMed  Google Scholar 

  • Liu P-P, von Dahl CC, Klessig DF (2011a) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011b) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez AMQ, Lucas JA (2002) Effects of plant defence activators on anthracnose disease of cashew. Eur J Plant Pathol 108:409–420

    Article  CAS  Google Scholar 

  • Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  CAS  PubMed  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier F, Zwicker S, Hückelhoven A, Meissner M, Funk J, Pfitzner AJ, Pfitzner UM (2011) NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol 12:73–91

    Article  CAS  PubMed  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HJ, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact 19:123–129

    Article  CAS  PubMed  Google Scholar 

  • Makandar R, Nalam VJ, Chowdhury Z, Sarowar S, Klossner G, Lee H, Burdan D, Trick HN, Gobbato E, Parker JE, Shah J (2015) The combined action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 promotes salicylic acid-mediated defenses to limit Fusarium graminearum infection in Arabidopsis thaliana. Mol Plant Microbe Interact 28:943–953

    Article  CAS  PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Aldwinkle HS, Jin QL, He SY (2006) Transgenic apple lines overexpressing the apple gene MpNPR1 have increased resistance to fire blight. Acta Hort 704:521–526

    Article  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98:196–204

    Article  CAS  PubMed  Google Scholar 

  • Manosalva PM, Park S-W, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl Esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant-Microbe Interact 23:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Marondedze C, Thomas L, Serrano NL, Lilley KS, Gehring C (2016) The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 6(29766)

    Google Scholar 

  • Mateo A, Muhlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheron ME, Porchas M (2002) Suppression of Phytophthora root and crown rot on pepper plants treated with Acibenzolar-S-methyl. Plant Dis 86:292–297

    Article  CAS  PubMed  Google Scholar 

  • Meur G, Budatha M, Gupta AD, Prakash S, Kirti PB (2006) Differential induction of NPR1 during defense responses in Brassica juncea. Physiol Mol Plant Pathol 68:128–137

    Article  CAS  Google Scholar 

  • Midoh N, Iwata M (1996) Cloning and characterization of a probenazole- inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9–18

    Article  CAS  PubMed  Google Scholar 

  • Molla K, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Karabi D (2016) Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Plant Sci 250:105–114

    Article  CAS  PubMed  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Interact 11:543–658

    Article  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mouhanna AM (2000) Rizomania: Untersuchungen zur epidemiologie und systemisch aktivierten resistenz (SAR) bei der Zuckerrübe. Justus-Liebig-Universität, Geissen, Germany., p 239

    Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant-Microbe Interact 23:340–351

    Article  CAS  PubMed  Google Scholar 

  • Nakashita H, Yasuda M, Nishioka M, Hasegawa S, Arai Y, Uramoto M, Yoshida S, Yamaguchi I (2002a) Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco. Plant Cell Physiol 43:823–831

    Article  CAS  PubMed  Google Scholar 

  • Nakashita H, Yoshioka K, Yasuda M, Nitta T, Arai Y, Yoshida S (2002b) Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation. Physiol Plant Pathol 61:197–203

    Article  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Okage R, Nishioka M, Arie T, Yoshida S (2003) A pyrazole derivative induces systemic acquired resistance with a new type of action. Plant Cell Physiol 44:S179–S179

    Google Scholar 

  • Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Návarová H, Bernsdorff F, Döring A-C, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of MATE transporter family. Plant Cell 14:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Nakashita H, Yasuda M, Yoshida S, Yamaguchi I (2005) Induction of resistance against rice bacterial blight by 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid. J Pest Sci 30:47–49

    Article  CAS  Google Scholar 

  • Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007) The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144:1144–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Ouyang J, Gill G (2009) SUMO engages multiple corepressors to regulate chromatin structure and transcription. Epigenetics 4:440–444

    Article  CAS  PubMed  Google Scholar 

  • Pajot E, Silue D (2005) Evidence that dl-3-aminobutyric acid and acibenzolar-S-methyl induce resistance against head rot disease of broccoli. Pest Manag Sci 61:1110–1114

    Article  CAS  PubMed  Google Scholar 

  • Pallas V, Gomez G (2013) Phloem RNA-binding proteins as potential components of a long-distance RNA transport system. Front Plant Sci 4:130

    PubMed  PubMed Central  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Liu PP, Forouhar F, Vlot AC, Tong L, Tietjen K, Klessig DF (2009) Use of synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem 284:7307–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker JE (2009) The quest for long-distance signals in plant systemic immunity. Sci Signal 2:pe31

    Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Rathore KS (2010a) Expression of Arabidopsis NPR1 in transgenic cotton confers resistance to non-defoliating isolates of Verticillium dahliae but not the defoliating isolates. J Phytopathol 158:822–825

    Article  CAS  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Rathore KS (2010b) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao S, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99:10865–10869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Scheid OM (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718

    CAS  PubMed  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ (2012) Prime time for transgenerational defense. Plant Physiol 158:545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Does D, Verhage A, Koornneef A, van Pelt JA, van Wees SCM (2012) Networking by small-molecule hormones in plant immunity. Induced resistance against insects and diseases. IOBC-WPRS Bull 83:77–80

    Google Scholar 

  • Po-Wen C, Singh P, Zimmerli L (2013) Priming of the Arabidopsis pattern-triggered immunity response upon infection by nerotrophic Pectobacterium carotovorum bacteria. Mol Plant Pathol 14:58–70

    Article  PubMed  CAS  Google Scholar 

  • Prats E, Rubiales D, Jorrin J (2002) Acibenzolar-S-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiol Mol Plant Pathol 60:155–162

    Article  CAS  Google Scholar 

  • Probst AV, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence RJ, Pikaard C S, Murfett J, Furner I, Vaucheret H, Scheid OM (2004) Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16:1021–1034

    Google Scholar 

  • Probst AV, Fransz PF, Paszkowski J, Mittelsten Scheid O (2003) Two means of transcriptional reactivation within heterochromatin. Plant J 33:743–749

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano JR, Cohen JD, Katagiri F (2010) A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant-Microbe Interact 23:1573–1583

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant-Microbe Interact 20:492–499

    Article  CAS  PubMed  Google Scholar 

  • Qu F, Morris TJ (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infection. FEBS Lett 579:5958–5964

    Article  CAS  PubMed  Google Scholar 

  • Quenault T, Lithgow T, Traven A (2011) PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21:104–112

    Article  CAS  PubMed  Google Scholar 

  • Quilis J, Peñas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interact 21:1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Raacke IC, von Rad U, Mueller MJ, Berger S (2006) Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as-independent mechanisms. Mol Plant Microbe Interact 19:1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Rivas S, Roby D (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett 580:3498–3504

    Article  CAS  PubMed  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas Fir. Plant Physiol 143:410–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh Sundar A, Velazhahan R, Viswanathan R, Padmanabhan P, Vidhyasekaran P (2001) Induction of systemic resistance to Colletotrichum falcatum in sugarcane by a synthetic signal molecule, Acibenzolar-S-methyl (CGA-245704). Phytoparasitica 29:231–242

    Article  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reglinski T, Newton AC, Lyon GD (1994a) Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. J Plant Dis Prot 101:1–10

    CAS  Google Scholar 

  • Reglinski T, Newton AC, Lyon GD (1994b) Induction of resistance mechanisms in barley by yeast-derived elicitors. Ann Appl Biol 124:509–517

    Article  Google Scholar 

  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol 191:107–119

    Article  CAS  PubMed  Google Scholar 

  • Rocher F, Chollet J-F, Jousse C, Bonnemain J-L (2006) Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiol 141:1684–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochon A, Boyle P, Wignes T, Fobert PR, Despres C (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell 18:3670–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Rustérucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30

    Article  CAS  PubMed  Google Scholar 

  • Sahana N, Kaur H, Basavaraj Tena F, Jain RK, Palukaitis P, Canto T, Praveen S (2012) Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteasomal catalytic activity is modulated by viral factor HcPro. PLoS ONE 7:e52546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, Tada Y, Yokozeki Y, Akagi H, Hyashi N, Fujimura T, Ichikava N (1999) Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol Biol 40:847–855

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavalrev R, Nomoto M, Taga Y, Dong X (2015) Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 18:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffrath U, Freydl E, Dudler R (1997) Evidence for different signaling pathways activated by inducers of acquired resistance in wheat. Mol Plant Microbe Interact 10:779–783

    Article  CAS  Google Scholar 

  • Schreiber K, Desveaux D (2008) Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol J 24:245–268

    Article  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell Environ 29:909–918

    Article  CAS  Google Scholar 

  • Schweizer P, Schiagenhauf E, Schaffrath U, Dudler R (1999) Different patterns of host genes are induced in rice by Pseudomonas syringae, a biological inducer of resistance, and the chemical inducer benzothiadiazole (BTH). Eur J Plant Pathol 105:659–665

    Article  CAS  Google Scholar 

  • Sekizawa Y, Haga M, Hirabayashi E, Takeuchi N, Takino Y (1987) Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substances. Agric Biol Chem 51:763–770

    CAS  Google Scholar 

  • Seo PJ, Park C-M (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  CAS  PubMed  Google Scholar 

  • Seo W-S, Lee S-K, Song M-Y, Suh J-P, Hahn T-R, Ronald P, Jeon J-S (2008) The HSP90-SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51:1–10

    Article  CAS  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  CAS  PubMed Central  Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4(30). https://doi.org/10.3389/fpls.2013.00030

  • Shapiro AD, Gutsche AT (2003) Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. Anal Biochem 320:223–233

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Yuan B, Liu H, Li X, Xu C, Wang S (2010) Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J 64:86–99

    CAS  PubMed  Google Scholar 

  • Shi L, Fang Y (2011) Histone variants: making structurally divergent nucleosomes and linkers in chromatin. Front Biol 6:93–101

    Article  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–727

    Article  CAS  Google Scholar 

  • Siegrist J, Orober M, Buchenauer H (2000) β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol Mol Plant Pathol 56:95–106

    Article  CAS  Google Scholar 

  • Silva KJP, Brunings A, Peres NA, Mou Z, Folta KM (2015) The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. Trans Res 24:693–704

    Article  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  • Smith-Becker J, Keen NT, Becker JO (2003) Acibenzolar-S-methyl induces resistance to Colletotrichum lagenarium and cucumber mosaic virus in cantaloupe. Crop Prot 22:769–774

    Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  PubMed  Google Scholar 

  • Sobiczewski P, Krupiński G, Berczyński S, Basak A (2001) The effect of resistance inducers on the suppression of fire blight (Erwinia amylovora) on apple shoots and pear fruitlets. Phytopathologia Polonica 22:171–182

    Google Scholar 

  • Song JT (2006) Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol Cells 22:233–238

    CAS  PubMed  Google Scholar 

  • Spletzer ME, Enyedi AJ (1999) Salicylic acid induces resistance to Alternaria solani in hydroponically grown tomato. Phytopathology 89:722–727

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Stadnik MJ, Buchenauer H (2000) Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f sp tritici. Physiol Mol Plant Pathol 57:25–34

    Article  CAS  Google Scholar 

  • Staiger D, Korneli C, Lummer M, Navarro L (2013) Emerging role for RNA-based regulation in plant immunity. New Phytol 197:394–404

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suo Y, Leung DWM (2002) BTH-induced accumulation of extracellular proteins and blackspot disease in rose. Biol Plant 45:273–279

    Article  CAS  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxin Science 321:952–956

    Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J 40:586–595

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji H (2014) Development of disease-resistant rice using regulatory components of induced disease resistance. Front Plant Sci 5:630. https://doi.org/10.3389/fpls.2014.00630

    Article  PubMed  PubMed Central  Google Scholar 

  • Terry LA, Joyce DC (2000) Suppression of grey mould on strawberry fruit with the chemical plant activator acibenzolar. Pest Manage Sci 56:989–992

    Article  CAS  Google Scholar 

  • Thomson SV, Brisset MN, Chartier R, Paulin JP (1999a) Induced resistance in apple and pear seedlings to fire blight by Bion and correlation with some defense related enzymes. Acta Hortic 489:583–588

    Article  CAS  Google Scholar 

  • Thomson SV, Gouk SC, Paulin JP (1999b) Efficacy of Bion® (Actigard®) to control fire blight in pear and apple orchards in USA, New Zealand, and France. Acta Hortic 489:589–595

    Article  CAS  Google Scholar 

  • Thrower JS, Hoffmann L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Sasvari Z, Gonzalez PA, Friso G, Rowland E, Liu X-M, van Wijk KJ, Nagy PD, Klessig DP (2015) Salicylic acid inhibits the replication of Tomato bushy stunt virus by directly targeting a host component in the replication complex. Mol Plant-Microbe Interact 28:379–386

    Article  CAS  PubMed  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant-Microbe Interact 18:555–561

    Article  CAS  PubMed  Google Scholar 

  • Tosi L, Zazzerini A (2000) Interactions between Plasmopara helianthi, Glomus mosseae, and two plant activators in sunflower plants. Eur J Plant Pathol 106:735–744

    Article  CAS  Google Scholar 

  • Tosun N (2007) Disease control with ISR2000TM elicitor in conjunction with fungicides. http://www.engormix.com/disease_control

  • Tripathi D, Jiang Y-L, Kumar D (2010) SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett 584:3458–3463

    Article  CAS  PubMed  Google Scholar 

  • Truman G, Glazebrook J (2012) Coexpression analysis identifies putative targets for CBP60g and SARD1 regulation. BMC Plant Biol 12:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubata K, Kuroda K, Yamamoto Y, Yasokawa N (2006) Development of a novel plant activator for rice diseases, tiadinil. J Pestic Sci 31:161–162

    Article  CAS  Google Scholar 

  • Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53:763–775

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PloS Genet 5(12):e1000772, 16

    Google Scholar 

  • Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M (2009) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 57:463–472

    Article  CAS  PubMed  Google Scholar 

  • van den Burg HA, Takken FLW (2010) SUMO-, MAPK- and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. Plant Signal Behav 5:1507–1601

    Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Verk MC, Bol JF, Linthorst HJM (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11:89. https://doi.org/10.1186/1471-2229-11-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasiukova NI, Ozeretskovskaia OL (2007) Induced plant resistance and salicylic acid: a review. Prikl Biokhim Mikrobiol 43:405–411

    CAS  PubMed  Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18:779–783

    Article  CAS  PubMed  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Resist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht, p 442

    Book  Google Scholar 

  • Vidhyasekaran P (2015) Plant hormone signaling systems in plant innate immunity. Springer, Dordrecht, p 458

    Google Scholar 

  • Vidhyasekaran P (2016) Switching on plant innate immunity signaling systems: bioengineering and molecular manipulation of PAMP-PIMP-PRR signaling complex. Springer, Dordrecht, p 358

    Book  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    Article  CAS  PubMed  Google Scholar 

  • Vincill ED, Bieck AM, Spalding EP (2012) Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors Plant Physiol 159:40–46

    Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008a) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008b) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S (2007) EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol 7:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waller F, Müller A, Chung K-M, Yap Y-K, Nakamura K, Weiler E, Sano H (2006) Expression of a WIPK-activated transcription factor results in increase of endogenous salicylic acid and pathogen resistance in tobacco plants. Plant Cell Physiol 47:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

    Article  CAS  PubMed  Google Scholar 

  • Wan D, Li R, Zou B, Zhang X, Cong J, Wang R, Xia Y, Li G (2012) Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31:1269–1281

    Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao M, Li Q, Wang L, Jeon J-S, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant-Microbe Interact 21:294–303

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5(2):e1000301. https://doi.org/10.1371/journal.ppat.1000301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tsuda K, Truman W, Sato M, Nguyen LV, Katagiri F, Glazebrook J (2011) CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J 67:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Wen N, Chu Z, Wang S (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339

    Article  CAS  PubMed  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Withers J, Dong X (2016) Posttranslational modifications of NPR1: a single protein playing multiple roles in plant Immunity and physiology. PLoS Pathog 12(8):e1005707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Zhang D, Chu Jee Y, Boyle P, Wang Y, Brindle Ian D, De Luca V, Desprѐs C (2012) The Arabidopsis NPR1 protein is a receptor to the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Chen Z (2006) Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens. Plant Sci 171:251–262

    Article  CAS  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Song F, Zheng Z (2006) OsBISAMT1, a gene encoding S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Mol Biol Rep 33:223–231

    Article  CAS  PubMed  Google Scholar 

  • Yang D-L, Yang Y, He Z (2013) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6:675–685

    Article  CAS  PubMed  Google Scholar 

  • Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao C, Wu Y, Nie H, Tang D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant J 71:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M (2007) Regulation mechanisms of systemic acquired resistance induced by plant activators. J Pest Sci 32:281–282

    Article  Google Scholar 

  • Yasuda M, Nakashita H, Hasegawa S, Nishioka M, Arai Y, Uramoto M, Yamaguchi I, Yoshida S (2003a) N-Cyanomethyl-2-chloroisonicotinamide induces systemic acquired resistance in Arabidopsis without salicylic acid accumulation. Biosci Biotechnol Biochem 67:322–328

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Nishioka M, Nakashita H, Yamaguchi I, Yoshida S (2003b) Pyrazolecarboxylic acid derivative induces systemic acquired resistance in tobacco. Biosci Biotechnol Biochem 67:2614–2620

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Nakashita H, Yoshida S (2004) Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco. J Pest Sci 29:46–49

    Article  CAS  Google Scholar 

  • Yasuda M, Kusajima M, Nakajima M, Akutsu K, Kudo T, Yoshida S, Nakashita H (2006) Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation. J Plant Sci 31:329–334

    CAS  Google Scholar 

  • Yoda H, Sano H (2003) Activation of hypersensitive response genes in the absence of pathogens in transgenic tobacco plants expressing a small GTPase. Planta 217:993–997

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Nakashita H, Klessig DF, Yamaguchi I (2001) Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J 25:149–157

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324

    Article  CAS  PubMed  Google Scholar 

  • Zahn LM (2009) Secondary messenger. Sci Signal 2:ec123

    Google Scholar 

  • Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Moyne A-L, Reddy MS, Kloeppe JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003a) A gain of function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003b) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbovic V, Triplett EW, Mou Z (2010a) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100

    Article  CAS  Google Scholar 

  • Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, Geo M, Xu F, Li Y, Zhu Z, Li X, Zhang Y (2010b) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci USA 107:18220–18225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wu Q, Ren J, Qian W, He S, Huang K, Yu XC, Gao Y, Huang P, An C (2012) Two novel RING-type ubiquitin ligases, RGLG4 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiol 160:808–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbi-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:596–605

    Article  CAS  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou N, Tootle T, Tsui F, Klessig D, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses to Arabidopsis. Plant Cell 10:1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Mosher S, Tian M, Sassi G, Parker J, Klessig DF (2008) The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. Mol Plant-Microbe Interact 21:40–49

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Gopinath K, Murali A, Yi G, Hayward SD, Zhu H, Kao C (2007) RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA 104:3129–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziadi S, Poupard P, Brisset MN, Paulin JP, Simoneau P (2001) Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid. Physiol Mol Plant Pathol 59:33–43

    Article  CAS  Google Scholar 

  • Ziadi S, Barbedette S, Godard JF, Monot C, Le Corre D, Silue D (2008) Production of pathogenesis-related proteins in the cauliflower (Brassica oleracea var botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl. Plant Pathol 50:579–586

    Article  Google Scholar 

  • Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci USA 97:12920–12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Metraux J-P, Mauch-Mani B (2001) β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoeller M, Stingl N, Krischke M, Fekete A, Waller F, Berger S, Mueller MJ (2012) Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol 160:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vidhyasekaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidhyasekaran, P. (2020). Bioengineering and Molecular Manipulation of Salicylic Acid Signaling System to Activate Plant Immune Responses for Crop Disease Management. In: Plant Innate Immunity Signals and Signaling Systems. Signaling and Communication in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1940-5_5

Download citation

Publish with us

Policies and ethics