Skip to main content

Models and Modelling in Science and Science Education

  • Chapter
Science Education

Part of the book series: New Directions in Mathematics and Science Education ((NDMS))

Abstract

This chapter discusses the nature and roles of models in science, and in science education. It is argued that models and modelling are important in science teaching both because of the need to authentically reflect the importance of modelling in science itself, and because of the pedagogic role of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563.

    Article  Google Scholar 

  • Gilbert, J. K. (1998). Explaining with models. In M. Ratcliffe (Ed.), ASE guide to secondary science education (pp. 159–166). London: Stanley Thornes.

    Google Scholar 

  • Justi, R., & Gilbert, J. K. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom’. International Journal of Science Education, 22(9), 993–1009.

    Article  Google Scholar 

  • Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115–142.

    Article  Google Scholar 

  • Ogborn, J. (1999). New hope for physics education. Physics World, 12(10), 29. Retrieved from http://stacks.iop.org/2058-7058/12/i=10/a=22

    Article  Google Scholar 

  • Sacks, O. (1995). An anthropologist on mars. London: Picador.

    Google Scholar 

  • Taber, K. S. (2000). Finding the optimum level of simplification: The case of teaching about heat and temperature. Physics Education, 35(5), 320–325.

    Article  Google Scholar 

  • Taber, K. S. (2001). When the analogy breaks down: Modelling the atom on the solar system. Physics Education, 36(3), 222–226.

    Article  Google Scholar 

  • Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94–116.

    Article  Google Scholar 

  • Taber, K. S. (2007). Enriching school science for the gifted learner. London: Gatsby Science Enhancement Programme.

    Google Scholar 

  • Taber, K. S. (2011). The natures of scientific thinking: Creativity as the handmaiden to logic in the development of public and personal knowledge. In M. S. Khine (Ed.), Advances in the nature of science research: Concepts and methodologies (pp. 51–74). Dordrecht: Springer.

    Google Scholar 

  • Taber, K. S. (2014). Student thinking and learning in science: Perspectives on the nature and development of learners’ ideas. New York, NY: Routledge.

    Google Scholar 

  • Taber, K. S. (2016). ‘Chemical reactions are like hell because…’: Asking gifted science learners to be creative in a curriculum context that encourages convergent thinking. In M. K. Demetrikopoulos & J. L. Pecore (Eds.), Interplay of creativity and giftedness in science (pp. 321–349). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Taber, K. S., Ruthven, K., Howe, C., Mercer, N., Riga, F., Hofmann, R., & Luthman, S. (2015). Developing a research-informed teaching module for learning about electrical circuits at lower secondary school level: Supporting personal learning about science and the nature of science. In E. de Silva (Ed.), Cases on research-based teaching methods in science education (pp. 122–156). Hershey, PA: IGI Global.

    Chapter  Google Scholar 

  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. doi:10.1080/09500690110066485

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18(1), 123–183. doi:10.1016/0364-0213(94)90022-1

    Article  Google Scholar 

  • Watson, J. D. (1968/1980). The text of the double helix: A personal account of the discovery of the structure of DNA. In G. S. Stent (Ed.), The double helix: A personal account of the discovery of the structure of DNA (Norton Critical Edition ed., pp. 1–133). New York, NY: W W Norton and Company.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Sense Publishers

About this chapter

Cite this chapter

Taber, K.S. (2017). Models and Modelling in Science and Science Education. In: Taber, K.S., Akpan, B. (eds) Science Education. New Directions in Mathematics and Science Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-749-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-749-8_20

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-749-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics