Skip to main content

Static Phasor Transformation

  • Chapter
  • First Online:
Phasor Power Electronics

Part of the book series: KAIST Research Series ((KAISTRS))

  • 1806 Accesses

Abstract

It is highly demanded in power electronics to analyze thousands of numerous converters and power circuits by a unified general theory like the conventional Laplace transform or Fourier transform. It is highly demanded in power electronics to analyze thousands of numerous converters and power circuits by a unified general theory like the conventional Laplace transform or Fourier transform. The ‘phasor transformer’ concept is explained in this chapter as a candidate of the theory, which comprises of two parts: the ‘generalized switched transformer’ for all switching converters and the ‘general unified phasor transformation’ for all AC circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rim CT, Hu DY, Cho GH (1990) Transformers as equivalent circuits for switches: general proofs and DQ transformation-based analyses. IEEE Trans Ind Applicat 26(4):777–785

    Article  Google Scholar 

  2. Chen J, Ngo KDT (2001) Graphical phasor analysis of three-phase PWM converters. IEEE Trans Power Electron 16(5):659–666

    Article  Google Scholar 

  3. Middlebrook R, Cuk S (1976) A general unified approach to modeling switching power converter stages. IEEE PESC 18–34

    Google Scholar 

  4. Rim CT (1990, Feb) Analysis of linear switching systems using circuit transformations. Ph.D. dissertation, KAIST, Seoul

    Google Scholar 

  5. Novotny DW (1975) Switching function representation of polyphase inverters. IEEE Ind Applicat Society Conf Rec 823–831

    Google Scholar 

  6. Alesina A, Venturini MGB (1981, Apr) Solid-state power conversion: a fourier analysis approach to generalized transformer synthesis. IEEE Trans Circuits Syst CAS-28(4):319–330

    Google Scholar 

  7. Vorperian V, Tymersky R, Lee FC (1989, Apr) Equivalent circuit models for resonant and PWM switches. IEEE Trans Power Electron PE-4(2):205–214

    Google Scholar 

  8. Sanders SR, Noworolski JM, Liu XZ, Verghese GC (1991) Generalized averaging method for power conversion circuits. IEEE Trans Power Electron 6:251–259

    Article  Google Scholar 

  9. White DC, Woodson HH (1959) Electromechanical energy conversion. John Wiley and Sons, New York

    Google Scholar 

  10. Ngo KDT (1986, Oct) Low frequency characterization of PWM converter. IEEE Trans Power Electron PE-1:223–230

    Google Scholar 

  11. Yin B, Oruganti R, Panda SK, Bhat AKS (2009) A simple single—input-single-output (SISO) model for a three-phase PWM rectifier. IEEE Trans Power Electron 24(3):620–631

    Article  Google Scholar 

  12. Vorperian V (1990) Simplified analysis of PWM converters using the model of the PWM switch, part I and part II. IEEE Trans Aerospace Electron Syst 26(3):490–505

    Article  Google Scholar 

  13. Mao HC, Boroyevich D, Lee CY (1998) Novel reduced-order small signal model of a three-phase PWM rectifier and its application in control design and system analysis. IEEE Trans Power Electron 13(3):511–521

    Article  Google Scholar 

  14. Yin Y, Zane R, Glaser J, Erickson RW (2003, Aug) Small-signal analysis of frequency-controlled electronic ballasts. IEEE Trans Circuits Syst-I: fundamental theory and applications 5(8)

    Google Scholar 

  15. Ben-Yaakov S, Glozman S, Rabinovici R (2001) Envelope simulation by spice-compatible models of linear electric circuits driven by modulated signals. IEEE Trans Ind Appl 37(2):527–533

    Article  Google Scholar 

  16. Ye Z, Jain PK, Sen PC (2009) Phasor-domain modeling of resonant inverters for high-frequency AC power distribution systems. IEEE Trans Power Electron 24(4):911–924

    Article  Google Scholar 

  17. Rim CT, Choi NS, Cho GC, Cho GH (1994) A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit DQ transformation. IEEE Trans Power Electron 9(4):390–396

    Article  Google Scholar 

  18. Kwak S, Kim T (2009) An integrated current source inverter with reactive and harmonic power compensators. IEEE Trans Power Electron 24(2):348–357

    Article  MathSciNet  Google Scholar 

  19. Sun J (2009) Small-signal methods for AC distributed power systems–a review. IEEE Trans Power Electron 24(11):2545–2554

    Article  Google Scholar 

  20. Valdivia V, Barrado A, Laazaro A, Zumel P, Raga C, Fernandez C (2009) Simple modeling and identification procedures for “black-box” behavioral modeling of power converters based on transient response analysis. IEEE Trans Power Electron 24(12):2776–2790

    Article  Google Scholar 

  21. Sun J, Bing Z, Karimi KJ (2009) Input impedance modeling of multi pulse rectifiers by harmonic linearization. IEEE Trans Power Electron 24(12):2812–2820

    Article  Google Scholar 

  22. Barazarte R, Gonzalez G, Ehsani M (2010) Generalized gyrator theory. IEEE Trans Power Electron 25(7):1832–1837

    Article  Google Scholar 

  23. Dannehl J, Fuchs F, Thøgersen P (2010) PI state space current control of grid-connected PWM converters with LCL filters. IEEE Trans Power Electron 25(9):2320–2330

    Article  Google Scholar 

  24. Bucknall R, Ciaramella K (2010) On the conceptual design and performance of a matrix converter for marine electric propulsion. IEEE Trans Power Electron 25(6):1497–1508

    Article  Google Scholar 

  25. Kim S, Yoon Y, Sul S (2010) Pulse width modulation method of matrix converter for reducing output current ripple. IEEE Trans Power Electron 25(10):2620–2629

    Article  Google Scholar 

  26. Wood P (1979) General theory of switching power converters. In: IEEE PESC 3–10

    Google Scholar 

  27. Rim CT, Cho GH (1990) Phasor transformation and its application to the DC/AC analyses of frequency phase-controlled series resonant converters (SRC). IEEE Trans Power Electron 5:201–211

    Article  Google Scholar 

  28. Rim CT (1999) A complement of imperfect phasor transformation. In: Korea power electronics conference, Seoul, pp 159–163

    Google Scholar 

  29. Ye Z, Jain PK, Sen PC (2009) Phasor-domain modeling of resonant inverters for high-frequency AC power distribution systems. IEEE Trans Power Electron 24(4):911–924

    Article  Google Scholar 

  30. Szczesniak P, Fedyczak Z, Klytta M (2008) Modeling and analysis of a matrix-reactance frequency converter based on buck-boost topology by DQ0 Transformation. In: 13th international power electronics and motion control conference (EPE-PEMC 2008), pp 165–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun T. Rim .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rim, C.T. (2016). Static Phasor Transformation. In: Phasor Power Electronics. KAIST Research Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-0536-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0536-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0535-0

  • Online ISBN: 978-981-10-0536-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics