Skip to main content

Recent Advancement in the Development of Biopesticides by Actinomycetes for the Control of Insect Pests

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

Use, misuse, and abuse of synthetic pesticides have led to pesticide residue problems, environmental pollution, and disturbances in ecological balance by way of causing mortality to natural enemies. These problems forced scientists to look for newer avenues of managing the insect pest such as integrated pest management (IPM). Out of all the methods advocated in IPM, use of ‘green chemistry’ insecticides particularly from microorganism are of significant importance as they are ubiquitous in nature. Actinomycetes and their bioproducts are treasures of valuable products to mankind. In this chapter, actinomycetes producing products of insecticidal properties, their distribution, isolation, mode of action, and application of modern technologies such as quantitative structure–activity relationships (QSAR) and gene sequencing for enhancing the insecticidal properties have been reviewed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht CP, Sherman M (1987) Lethal and sub-lethal effect of avermectin B 1 on three fruit fly species (Diptera: Tephritidae). J Econ Entomol 80:344–347

    Article  CAS  Google Scholar 

  • Ando K, Oishi H, Hirano S, Okutomi T, Suzuki K, Okazaki H, Sawada M, Sagawa T (1971) Tetranactin, a new miticidal antibiotic. I. Isolation, characterization and properties of tetranactin. J Antibiot 24:347

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Sagawa T, Oishi H, Suzuki K and Nawata T (1974) Tetranactin, a pesticidal antibiotic. Proc 1st Intersect Congr IAMS (Sci Counc Jpn) 3:630

    Google Scholar 

  • Anwar S, Basharat A, Fouzia Q, Sajid I (2014) Insecticidal activity of actinomycetes isolated from salt range, Pakistan against mosquitoes and red flour beetle. Pak J Zool 46(1):83–92

    CAS  Google Scholar 

  • Arifuzzaman M, Khatun MR, Rahman H (2010) Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. Afr J Biotechnol 93:4615–4619

    Google Scholar 

  • Balagurunathan R, Radhakrishnan M (2007) Actinomycetes: diversity and their importance. In: Trivedi PC (ed) Microbiology – applications and current trends. Pointer Publishers, Jaipur, pp 297–329

    Google Scholar 

  • Balagurunathan R, Radhakrishnan M (2010) Biotechnological, genetic engineering and nano technological potential of actinomycetes. In: Maheshwari DK, Dubey RC, Saravanamurthu R (eds) Industrial exploitation of microorganisms. IK International Publishing House Pvt. Ltd, New Delhi, pp 302–321

    Google Scholar 

  • Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe-Am Soc Microbiol 2(3):125–131

    Google Scholar 

  • Barrios-Gonzalez J, Fernandez FJ, Tomasini A, Megia A (2005) Secondary metabolites production by solid-state fermentation. Malays J Microbiol 1:1–6

    Google Scholar 

  • Baskaran R, Vijayakumar R, Mohan PM (2011) Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands. Malays J Microbiol 7:26–32

    Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (2001) GABA and glutamate receptors as biochemical sites for insecticides action. In: Ishaaya I (ed) Biochemical sites of insecticides action and resistance. Springer, Berlin, pp 17–41

    Chapter  Google Scholar 

  • Bream AS, Ghazal SA, El-Aziz ZKA, Ibrahim SY (2001) Insecticidal activity of selected actinomycetes strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 66(2a):503–544

    Google Scholar 

  • Bressman W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48(2):233–240

    Article  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Omura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns LS, Graupner PR, Lewer P, Martin CJ, Vousden WA, Waldron C, Wilkinson B (2003) Spinosyn polyketide synthase fusion products synthesizing novel spinosyns and their preparation and use. Dow AgroSciences LLC, Indianapolis

    Google Scholar 

  • Cai DW (2008) Understand the role of chemical pesticides and prevent misuses of pesticides. Bull Agric Sci Technol 1:36–38

    Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  • Cox DL, Knight AL, Biddinger DG, Lasota JA, Pikounis B, Hull LA, Dybas (1995) Toxicity and field efficacy of avermectins against codling moth (Lepidoptera: Tortricidae) on apples. J Econ Entomol 88:708–715

    Article  CAS  Google Scholar 

  • Crouse GD, Sparks TC (1998) Naturally derived material as products and leads for insect control: the spinosyns. Rev Toxicol 2:133–146

    CAS  Google Scholar 

  • Crouse GD, Spark TC, Schoonover J, Gifford J, Dripps J, Bruce T, Larson LL, Garlich J, Hatton C, Hill RL, Worden TV, Martynow JG (2001) Recent advances in the chemistry of spinosyns. Pest Manag Sci 57:177–185

    Article  CAS  PubMed  Google Scholar 

  • Danheng Q, Jisheng R, Ying H (2008) Selective isolation and rapid identification of members of the Genus Micromonospora. Appl Environ Microbiol 74(17):5593–5597

    Article  CAS  Google Scholar 

  • Deng, Casida JE (1992) Housefly head GABA-gated chloride channel: toxicological relevant binding site for avermectins coupled to site for ethynyl-bicycloortho benzoate. Pest Biochem Physiol 43:116–122

    Article  CAS  Google Scholar 

  • Dhananjeyan V, Selven N, Dhanapal K (2010) Isolation, characterization, screening and antibiotic sensitivity of actinomycetes from locally (near MCAS) collected soil samples. J Biol Sci 10:514–519

    Article  Google Scholar 

  • Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010) Preliminary evaluation of anopheles mosquito larvicidal efficacy of mangrove actinobacteria. Int J Appl Biol Pharm Technol 1(2):374–381

    Google Scholar 

  • El-khawaga MA, Megahed M (2012) Antibacterial and insecticidal activity of actinomycetes isolated from sandy soil of Cairo-Egypt. Egypt Acad J Biol Sci 4(1):53–67

    Google Scholar 

  • El–Tarabily KA (2003) An endophytic chitinase–producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupin caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Article  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GESJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    Article  CAS  PubMed  Google Scholar 

  • Fischer MH, Mrozik H (1989) Chemistry. In: Cambell WC (ed) Ivermectin and abamectin. Springer, Berlin/Heidelberg/New York, pp 1–23

    Chapter  Google Scholar 

  • Fisher MH (1993) Recent progress in avermectin research. In: Duke SO, Menn JJ, Plimmer JR (eds) Pest control with enhanced environmental safety, ACS symposium series no. 524. American Chemical Society, Washington, DC, pp 169–182

    Chapter  Google Scholar 

  • Gadelhak GG, El-Tarabily KA, AL-Kaabi FK (2005) Insect control using chitinolytic soil actinomycetes as biocontrol agents. Int J Agric Biol 7(4):627–633

    Google Scholar 

  • Gaisser S, Martin CJ, Wilkinson B, Sheridan RM, Lill RE, Weston AJ, Ready SJ, Waldron C, Crouse GD, Leadlay PF, Staunton J (2002) Engineered biosynthesis of novel spinosyns bearing altered deoxyhexose substituents. Chem Commun 21:618–619

    Article  CAS  Google Scholar 

  • Gatewood ML, Bralley P, Weil MR, Jones GH (2012) RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III. J Bacteriol 194:2228–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem NB, Sabry SA, El-Sherif ZM, Abu El- Ela GA (2000) Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. J Gen Appl Microbiol 46:105–111

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R, Alekhya G, Vidya MS and Rajyalaxmi K (2014) Agriculturally important microbial germplasm database. Information bulletin number 95, Patancheru, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics. ISBN 978-92-9066-562-5. 80 pp

    Google Scholar 

  • Gupte M, Kulkarni P, Ganguli BN (2002) Antifungal antibiotics. Appl Microbiol Biotechnol 58:46–57

    Article  CAS  PubMed  Google Scholar 

  • Hahn DR, Gustafson G, Waldron C, Bullard B, Jackson JD, Mitchell J (2006) Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. J Ind Microbiol Biotechnol 33:94–104

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hayakawa M, Yoshida Y, Iimura Y (2004) Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J Appl Microbiol 96:96973–96981

    Article  CAS  Google Scholar 

  • Herbert AK (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot (Tokyo) 63:101–111

    Article  CAS  Google Scholar 

  • Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF (2002) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46:917–932

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA (1999) Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145:2183–2202

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Kontsedalov S, Denholm I, Ishaaya I (2002) Dynamics of insecticide resistance in Bemisia tabaci – a case study with an insect growth regulator. Pest Manag Sci 58:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Kontsedalov S, Ishaaya I (2004) Dynamics of resistance to the neonicotinoids, acetamiprid and thiamethoxam, in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 97:2051–2056

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Denholm I, Morin S (2007) Resistance of the TYLCV whitefly vector Bemisia tabaci to insecticides. In: Czosnek H (ed) Tomato yellow leaf curl virus disease, management, molecular biology, breeding for resistance (in press). Springer, Berlin

    Google Scholar 

  • Huamei L, Sheng Q, Yongxia W, Wenjun L, Jie Z (2008) Insecticidal action of Quinomycin A from Streptomyces sp KN-0647, isolated from a forest soil. World J Microbiol Biotechnol 24:2243–2248

    Article  CAS  Google Scholar 

  • Ikeda H, Shin-Ya K, Omura S (2013) Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 41:233–250

    Article  PubMed  CAS  Google Scholar 

  • Ishaaya I, Kontsedalov S, Horowitz AR (2002) Emamectin, a novel insecticide for controlling field crop pests. Pest Manag Sci 58:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nishizawa Y (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem 67:847–855

    Article  CAS  PubMed  Google Scholar 

  • Jansson RK, Dybas RA (1996) Avermectins: biochemical mode of action, biological activity and agricultural importance. In: Ishaaya I (ed) Insecticides with novel modes of action: mechanisms and application. Springer, New York, pp 152–170

    Google Scholar 

  • Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ, Hu WS (2008) Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS One 3:e2097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Ma CS (2000) Progress of researches on biopesticides. Pesticides 16:73–77

    Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Kamil I, Talha G, Özdemir- Kocak F, Elif C (2014) Molecular identification of different actinomycetes isolated from East Black Sea region plateau soil by 16S rDNA gene sequencing. Afr J Microbiol Res 8(9):878–887

    Article  CAS  Google Scholar 

  • Kaur T, Kumari MR (2013) Antifungal, insecticidal, and plant growth-promoting potential of Streptomyces hydrogenans DH16. J Basic Microbiol 53:1–11

    Article  Google Scholar 

  • Khucharoenphaisan K, Sripairoj N, Sinma K (2012) Isolation and identification of actinomycetes from termite’s gut against human pathogen. Asian J AniVeterin Adv 7(1):68–73

    Article  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111

    Article  CAS  PubMed  Google Scholar 

  • Lasota JE, Dybas RA (1991) Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36:91–117

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier HA, Lechevalier MP (1981) Introduction to the order Actinomycetales. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1915–1922

    Google Scholar 

  • Legocki J, Polec I, Zelechowski K (2010) Trends in development of active substances possessing the pesticidal properties: spinosyn insecticides. Pesticides 1(4):59–71

    Google Scholar 

  • Lewer P (2009) Discovery of the butenyl-spinosyn insecticides: novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorg Med Chem 17:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Men WJ, Liu YJ (2002) The pollution of pesticides in soils and its bioremediation. Syst Sci Compr Stud Agric 18(4):295–297

    Google Scholar 

  • Liu H, Qin S, Wang Y, Li W, Zhang J (2008) Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J Microbiol Biotechnol 24(10):2243–2248

    Article  CAS  Google Scholar 

  • Lo CW, Lai NS, Cheah HY, Wong NKI, Ho CC (2002) Actinomycetes isolated from soil samples from the Crocker range Sabah. Asean Rev Biodivers Environ Conserv 9:1–7

    Google Scholar 

  • López O, Fernández-Bolaños JG, Gil MV (2005) New trends in pest control: the search for greener insecticides. Green Chem 7:431–442

    Article  CAS  Google Scholar 

  • Madduri K, Waldron C, Merlo DJ (2001) Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J Bacteriol 183:5632–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan GB (2012) Antibacterial agents from actinomycetes – a review. Front Biosci 4:240–253

    Article  Google Scholar 

  • Maldonado LA, Fragoso-Yáñez D, Pérez-García A, Rosellón-Druker J, Quintana ET (2009) Actinobacterial diversity from marine sediments collected in México. Antonie Van Leeuwenhoek 95:111–120

    Article  CAS  PubMed  Google Scholar 

  • Martin C (2003) Genetic engineering of Saccharopolyspora spinosa to generate a library of spinosyn analogues. In: 13th international society for the biology of actinomycetes, book of abstracts, University of the Sunshine Coast, Sippy Downs, Australia

    Google Scholar 

  • Mellin TN, Busch RD, Wang CC (1983) Postsynaptic inhibitions of invertebrate neuromuscular transmission by avermectin B1a. Neuropharmacology 22:89–96

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Ebbinghaus U, Tietjen K (1999) Ligands of the nicotinic acetylcholine receptor as insecticides. Pestic Sci 55:608–610

    Article  CAS  Google Scholar 

  • Omura S, Takahashi Y, Iwai Y, Tanaka H (1982) Kitasatospora a new genus of the order actinomycetales. J Antibiot 35:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Tanaka Y, Iwai Y (1989) Genus Kitasatospora. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. The Williams and Wilkins, Baltimore, p 350

    Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otoguro K, Nakagawa A, Omura S (1988) Setamycin, a 16-membered macrolide antibiotic: identification and nematicidal activity. J Antibiot 41:250–252

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Xiyang JL, Zhang R, Hu Y, Zhou Y, Junwang BZ (2011) Genome sequence of the spinosyns producing bacterium saccharopolyspora spinosa NRRL 18395. J Bacteriol 193(12):3150–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Rajinder P, Dhawan A (eds) Integrated pest management: innovation-development process. Springer, Dordrecht pp 83–87

    Chapter  Google Scholar 

  • Prashith Kekuda TR, Shobha KS, Onkarappa R (2010) Potent insecticidal activity of two Streptomyces species isolated from the soils of the Western Ghats of Agumbe, Karnataka. J Nat Pharmac 1:1

    Article  Google Scholar 

  • Ratnakumari B, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2014) Microbes as a interesting source of novel insecticides. A review. Afr J Biotechnol 13(26):2582–2592

    Article  CAS  Google Scholar 

  • Rebets Y, Brötz E, Tokovenko B, Luzhetskyy A (2014) Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol 41:387–402

    Article  CAS  Google Scholar 

  • Reddy NG, Ramakrishna DPN, Gopal SVR (2011) A morphological, physiological and biochemical studies of marine Streptomyces rochei (MTCC 10109) showing antagonistic activity against selective human pathogenic microorganisms. Asian J Biol Sci 4:1–14

    Article  CAS  Google Scholar 

  • Reguera G, Leschine SB (2001) Chitin degradation by cellulolytic anaerobes and facultative aerobes from soils and sediments. FEMS Microbiol Lett 204:367–374

    Article  CAS  PubMed  Google Scholar 

  • Rohrer SP, Birzin ET, Costa SD, Arena JP, Hayes EC, Schaeffer JH (1995) Identification of neuron-specific ivermectin binding sites in Drosophila melanogaster and Schistocerca americana. Insect Biochem Mol Biol 25:11–17

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Fujii T, Miyashita K (2003) Distribution and evolution of chitinase genes in Streptomyces species: involvement of gene-duplication and domain-deletion. Antonie Van Leeuwenhoek 84(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Salgado VL, Sparks TC (2005) The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Gilbert LJ, Iatrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier, Oxford, pp 137–173

    Chapter  Google Scholar 

  • Salgado VL, Sparks TC (2010) The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Gilbert LI, Gill SS (eds) Insect control biological and synthetic agents. Academic, London, pp 207–243

    Google Scholar 

  • Sathya A, Vijayabharathi R, Ratnakumari B, Srinivas V, Sharma HC, Sathyadevi P, Gopalakrishnan S (2016) Assessment of diketopiperzine cyclo (tre-Phe) from Streptomyces griseoplanus SAI-25 against cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Entomol Zool 51(1):11–20

    Google Scholar 

  • Saxena A, Upadhyay R, Kumar D, Naveen K (2013) Isolation, antifungal activity and characterization of soil actinomycetes. J Sci Ind Res 72:491–497

    Google Scholar 

  • Semedo LTAS, Linhares AA, Gomes RC, Manfi GP, Alviano CS, Linhares LF, Coelho RRR (2001) Isolation and characterization of actinomycetes from Brazilian tropical soils. Microbiol Res 155:291–299

    Article  CAS  PubMed  Google Scholar 

  • Shukla RK, Pushplata T, Kumar S (2015) Evaluation of larvicidal efficacy of actinomycetes, isolated from the soil, against dengue vector, Aedes aegypti L. Indian Res J Genet Biotechnol 7(2):248–254

    Google Scholar 

  • Solans M, Vobis G (2003) Saprophytic actinomycetes associated to the rhizosphere and rhizoplane of Discaria trinervis. Ecologia Aust 13:97–107

    Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure–activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905

    Article  CAS  PubMed  Google Scholar 

  • Sparks TC, Thompson GD, Kirst HA, Hertlein MB, Mynderse JS, Turner JR, Worden TV (2007) Fermentation-derived insect control agents. The spinosyns. In: Methods in biotechnology, biopesticides: use and delivery, Humana Press, NJ, pp 171–188

    Google Scholar 

  • Speck-Planche A, Cordeiro MNDS, Guilarte-Montero L, Year-Bueno R (2011) Current computational approaches towards the rational design of new insecticidal agents. Curr Comput Aided Drug Des 7:304–314

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Brevault T, Carriere Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Takiguchi Y, Mishima H, Okuda M, Terao M, Aoki A, Fukuda R (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physicochemical properties. J Antibiot 33:1120–1127

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87

    Article  CAS  PubMed  Google Scholar 

  • Thomas VN, Athanassiou CG, Saglam O, Chloridis AS, Dripps JE (2012) Insecticidal effect of spinetoram against six major stored grain insect species. J Stored Prod Res 51:69–73

    Article  CAS  Google Scholar 

  • Thompson DG, Harris BJ, Buscarini TM, Chartrand DT (2002a) Fate of spinosad in litter and soils of a white spruce plantation in central Ontario. Pest Manag Sci 58(4):397–404

    Article  CAS  PubMed  Google Scholar 

  • Thompson DG, Harris BJ, Lanteigne LJ, Buscarini TM, Chartrand DT (2002b) Fate of spinosad in litter and soils of a mixed conifer stand in the acadian forest region of New Brunswick. J Agric Food Chem 50(4):790–795

    Article  CAS  PubMed  Google Scholar 

  • Usha RJ, Shenpagam NH, Devi DK (2011) Antagonistic activity of actinomycetes isolates against human pathogen. J Microbiol Biotechnol Res 1:74–77

    Google Scholar 

  • Vijayabharathi R, Ratna Kumari B, Satya A, Srinivas V, Rathore A, Sharma HC, Gopalakrishnan S (2014) Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Can J Plant Sci 94:759–769

    Article  Google Scholar 

  • Waldron C, Madduri K, Crawford K, Merlo DJ, Treadway P, Broughton MC, Baltz RH (2000) A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa. Antonie Van Leeuwenhoek 78:385–390

    Article  CAS  PubMed  Google Scholar 

  • Waldron C, Matsushima P, Rosteck PR Jr, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8:487–499

    Article  CAS  PubMed  Google Scholar 

  • Watson GB (2001) Actions of insecticidal spinosyns on γ-aminobutyric acid responses from small-diameter cockroach neurons. Pestic Biochem Physiol 71:20–28

    Article  CAS  Google Scholar 

  • Wilkins K (1996) Volatile compounds from actinomycetes. Chemosphere 32:1427–1434

    Article  CAS  Google Scholar 

  • Williamson N, Brian P, Wellington EMH (2000) Molecular detection of bacterial and Streptomycete chitinases in the environment. Antonie Van Leeuwenhoek 78:315–321

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Li J, Kong F (2004) Streptomyces sp. 173, an insecticidal microorganism from marine. Lett Appl Microbiol 38(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Yague P, Rodriguez-Garcia A, Lopez-Garcia MT, Martin JF, Rioseras B, Sanchez J, Manteca A (2013) Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes. PLoS One 8:e60665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JL (2001) Green chemistry and technology. Beijing University of Posts and Telecommunications, Beijing, pp 176–180

    Google Scholar 

  • Zhang WJ (2008) A forecast analysis on world population and urbanization process. Environ Dev Sustain 10:717–730

    Article  Google Scholar 

  • Zhang WJ, Pang Y (2009) Impact of IPM and transgenics in the Chinese agriculture. In: Peshin R, Dhawan AK (eds) Integrated pest management: dissemination and impact. Springer, New York, pp 525–553

    Chapter  Google Scholar 

  • Zhang WJ, Qi YH, Zhang ZG (2006) A long-term forecast analysis on worldwide land uses. Environ Monit Assess 119:609–620

    Article  PubMed  Google Scholar 

  • Zhang W, Jiang F, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144

    CAS  Google Scholar 

  • Zheng Z, Zeng W, Huang Y, Yang Z, Li J, Cai H, Su W (2000) Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol Lett 188:87–91

    Article  CAS  PubMed  Google Scholar 

  • Zhu CX, Bai XS, Zhang M (2002) The status quo of development and perspective of biopesticides. Shanghai Environ Sci 21(11):654–659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karnam Venkatachalapathy Hariprasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hariprasad, K.V. (2016). Recent Advancement in the Development of Biopesticides by Actinomycetes for the Control of Insect Pests. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_4

Download citation

Publish with us

Policies and ethics