Skip to main content

Applications of Select Nanomaterials

  • Chapter
  • First Online:
Therapeutic and Diagnostic Nanomaterials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

  • 1038 Accesses

Abstract

The diagnostic and therapeutic applications of nanomaterials are numerous. This chapter presents select examples of the biomedical applications of the following nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Koshki KN, As RP (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247. doi:10.1186/1556-276X-9-247

    Article  Google Scholar 

  • Akbarzadeh A, Sadabady RR, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Koshki KN (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102–109. doi:10.1186/1556-276X-8-102

    Article  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490. doi:10.1016/j.addr.2007.04.007

    Article  Google Scholar 

  • Beijnum VJR, Dings RP, van der Linden E, Zwaans BM, Ramaekers FC, Mayo KH, Griffioen AW (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108(7):2339–2348

    Article  Google Scholar 

  • Bradshaw MD, Knecht MR, Crooks RM (2005) Synthesis, characterization, and magnetism of dendrimer encapsulated co nanoparticles. www.dtic.mil/cgibin/GetTRDoc?AD=ADA516324

  • Cai S, Zhang Q, Bagby T, Forrest ML (2011) Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev 63:901–908. doi:10.1016/j.addr.2011.05.017

    Article  Google Scholar 

  • Caltagirone C, Falchi AM, Lampis S, Lippolis V, Meli V, Monduzzi M, Prodi L, Schmidt J, Sgarzi M, Talmon Y, Bizzarri R, Murgia S (2014) Cancer-cell-targeted theranostic cubosomes. Langmuir 30:6228–6236. doi:10.1021/la501332u

    Article  Google Scholar 

  • Cheng Y (2012) Dendrimer-based drug delivery systems from theory to practice. Wiley, New York

    Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical Diagnostics. Curr Opin Chem Biol 10:11–19. doi:10.1016/j.cbpa.2006.01.006

    Article  Google Scholar 

  • Coune A (1988) Liposomes as drug delivery system in the treatment of infectious diseases potential applications and clinical experience. Infection 16:141–147. doi:10.1007/BF01644088

    Article  Google Scholar 

  • Devasena T, Ashok V, Dey N, Francis AP (2014) Phytosynthesis of magnesium nanoparticles using lichens. World J Pharm Res 3(3):4625–4632

    Google Scholar 

  • Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5(70):1–16. doi:10.1186/1756-8722-5-70

  • Freitas RA Jr (1998) Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol 26:411–430. doi:10.3109/10731199809117682

    Article  Google Scholar 

  • Freitas RA Jr (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25. doi:10.1166/jctn.2005.01

    Google Scholar 

  • Freitas Jr RA (1998) Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotech 26:411–430. http://www.zdnet.com/article/nanotechnology-to-end-insulin-injections-for-diabetics/

  • Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220–2224. doi:10.1021/nl061498r

    Article  Google Scholar 

  • Friden PM, Walus LR, Musso GF, Starzyk RM (1991) Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci 88:4771–4775

    Google Scholar 

  • Garud A, Singh D, Garud N (2012) Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. Int Curr Pharm J 1:384–393. doi:10.3329/icpj.v1i11.12065

    Article  Google Scholar 

  • Gregoriadis G, McCormack B, Obrenovich M, Perrie Y (2000) Entrapment of plasmid DNA vaccines into liposomes by dehydration/rehydration. Methods Mol Med 29:305–311. doi:10.1385/1-59259-688-6:305

    Google Scholar 

  • Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, Gan L (2010) Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and highbioavailability. Acta Pharmacol Sin 31:990–998. doi:10.1038/aps.2010.98

    Article  Google Scholar 

  • Hyodo K, Yamamoto E, Suzuki T, Kikuchi H, Asano M, Ishihara H (2013) Development of liposomal anticancer drugs. Biol Pharm Bull 36:703–707. doi:10.1248/bpb.b12-0110

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Actabiochmicapolonica 48:199

    Google Scholar 

  • Kumar PSM, Francis AP, Devasena T (2014) Biosynthesized and chemically synthesized titaniananoparticles: comparative analysis of antibacterial activity. J Environ Nanotechnol 3(3):73–81. doi:10.13074/jent.2014.09.143098

    Article  Google Scholar 

  • Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, Antimisiaris SG, and Duyckaerts C (2012) Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine. 9:712–721. doi:http://dx.doi.org/10.1016/j.nano.2012.11.004

  • Lee JW, Park JH, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29(13):2113–2124. doi:10.1016/j.biomaterials.2007.12.048

  • Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3):354–360. doi:10.1038/nm1368

    Article  Google Scholar 

  • Maillefer D, van Lintel H, Rey-Mermet G, Hirschi R (1999) A high-performance silicon micropump for an implantable drug delivery system. Proceedings of the 12th IEEE MEMS 1999 Technical Digest, Orlando, FL, USA, 17–21 Jan 1999, pp 541–546

    Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr (2006). PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7(2):572–579

    Google Scholar 

  • Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, Kürzinger K, Stefani FD, Feldmann (2009) J Nano Lett Dec 2009, 9(12):4558–4563. doi:10.1021/nl903178n

  • Meng E, Hoang T (2012) Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv 3(12):1457–1467. doi:10.4155/tde.12.132

    Article  Google Scholar 

  • Morel S, Terreno E, Ugazio E, Aime S, Gasco MR (1998) NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes. Eur J Pharm Biopharm 45:157–163. doi:10.1016/S0939-6411(97)00107-0

    Article  Google Scholar 

  • Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG (2014) Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183. doi:10.1016/j.ejmech.2014.04.050

    Article  Google Scholar 

  • Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, Kalluri JR, Ray PC (2009). Ultrasensitive and highly selective detection of Alzheimer’s Disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 3:2834-2840. doi:10.1021/nn900813b

  • Nisar A, Mahaisavariya B, Tuantranont A (2008).MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130:917–942

    Google Scholar 

  • Paolino D, Cosco D, Gaspari M, Celano M, Wolfram J, Voce P, Puxeddu E, Filetti S, Celia C, Ferrari M, Russo D, Fresta M (2014) Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials 35:7101–7109. doi:10.1016/j.biomaterials.2014.04.088

    Article  Google Scholar 

  • Patidar A, Ds Thakur, Kumar P, Verma J (2010) A review on novel lipid based nanocarriers. Int J Pharm Pharm Sci 2:30–35

    Google Scholar 

  • Ravisankar S, Dey N, Francis AP, Pandian K, Devasena T (2015) Preparation and characterization of gatifloxacin encapsulated chitosan nanoparticles for ocular delivery. Int J Innovative Res Sci Eng Technol 4(1):28–33

    Google Scholar 

  • Saad M, Garbuzenko OB, Minko T (2008) Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond) 3:761–776. doi:10.2217/17435889.3.6.761

    Article  Google Scholar 

  • Sadhasivam L, Dey N, Francis AP, Devasena T (2015) Transdermal patches of chitosan nanoparticles for insulin delivery. Int J Pharm Pharm Sci 7(5):84–88

    Google Scholar 

  • Sampathkumar SG, Yarema KJ (2007). Dendrimers in cancer treatment and diagnosis. In: Nanotechnologies for life sciences, Wiley-VCH Verlag GmbH & Co. KGaA, Germany. doi:10.1002/9783527610419.ntls0071

  • Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2:159–182. doi:10.1177/2051013614541440

    Article  Google Scholar 

  • Shanmugam T, Banerjee R (2011) Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2:1485–1516

    Article  Google Scholar 

  • Shriver LP, Koudelka KJ, Manchester M (2009) Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol 211(1–2):66–72. doi:10.1016/j.jneuroim.2009.03.015

    Article  Google Scholar 

  • Soler M, Mesa-Antunez PM, Estevez MC, Ruiz-Sanchez AJ, Otte MA, Sepulveda B, Collado D, Mayorga C, Torres MJ, Perez-Inestrosa E, Lechuga LM (2015) Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens Bioelectron 66:115–123

    Article  Google Scholar 

  • Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. USA. 103:1215–1220. doi:10.1073/pnas.0509739103

    Article  Google Scholar 

  • Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6(5):634–641. doi:10.1016/j.nano.2010.04.005

    Google Scholar 

  • Suganya TR, Devasena T (2015) Exploring the mechanism of anti-inflammatory activity of phyto-stabilized silver nanorods. Digest J Nanomaterials Biostructures 10(1):277–282

    Google Scholar 

  • Torchilin VP (2006) Nanoprticulates as drug carriers. Imprerial College Press, London (ebook). ISBN 978-1-908979-97-1

    Book  Google Scholar 

  • Wang R, Ruan C, Kanayeva D, Lassiter K, Li Y (2008) TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett 8:2625–2631. doi:10.1021/nl080366q

    Article  Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B Chem 105:28–38

    Article  Google Scholar 

  • Woudenberg BA, Storm G, Woodle MC (1994) Liposomes in the treatment of infections. J Drug Target 2:363–371. doi:10.3109/10611869408996811

    Article  Google Scholar 

  • Yang J, Eom K, Lim EK, Park J, Kang Y, Yoon J, Na S, Koh EK, Suh JS, Huh YM, Kwo TY, Haam S (2008) In situ detection of live cancer cells by using bioprobes based on au nanoparticles. Langmuir 24:12112–12115. doi:10.1021/la802184m

    Article  Google Scholar 

  • Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W, Hu Y (2013) Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. Int J Mol Sci 14:19763–19773. doi:10.3390/ijms141019763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena T .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Devasena T (2017). Applications of Select Nanomaterials. In: Therapeutic and Diagnostic Nanomaterials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-0923-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0923-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0921-1

  • Online ISBN: 978-981-10-0923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics