Skip to main content

Effect of Nanoclay on Natural Fiber/Polymer Composites

  • Chapter
  • First Online:
Nanoclay Reinforced Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 903 Accesses

Abstract

Nanoclays play a significant role to improve composite performance by enhancing their properties such as thermal stability, mechanical strength, and barrier properties. Some of the important parameters contribute most to modify the properties of a variety of composites include the content, shape, size, and the affinity towards matrix material. With their enhanced performance, nanoclay filled polymer matrix based nanocomposites have drawn much attention in the materials industry. In this book chapter, the authors provide an overview of the effect of nanoclay on natural fiber/polymer composites, including the rheological properties, mechanical and thermal properties, morphological and structural properties, modeling of mechanical and rheological properties of nanoclay on natural fiber/polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

References

  • Alamri, H., Low, I.M.: Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites. Polym. Testing 31(6), 810–818 (2012)

    Article  Google Scholar 

  • Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. Part B-Eng. 43(7), 2762–2771 (2012). doi:10.1016/j.compositesb.2012.04.037

    Article  Google Scholar 

  • Ali, E.S., Ahmad, S.: Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nanoclay. Compos. B Eng. 43(7), 2813–2816 (2012)

    Article  Google Scholar 

  • Ávila, A.F., Donadon, L.V., Duarte, H.V.: Modal analysis on nanoclay epoxy-based fiber-glass laminates. Compos. Struct. 83(3), 324–333 (2008)

    Article  Google Scholar 

  • Avrami, M.: Kinetics of phase change. I General theory. J. Chem. Phys. 7(12), 1103–1112 (1939)

    Article  Google Scholar 

  • Avrami, M.: Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8(2), 212–224 (1940)

    Article  Google Scholar 

  • Avrami, M.: Granulation, phase change, and microstructure kinetics of phase change.III. J. Chem. Phys. 9(2), 177–184 (1941)

    Article  Google Scholar 

  • Bajpai, P.K., Singh, I., Madaan, J.: Joining of natural fiber reinforced composites using microwave energy: experimental and finite element study. Mater. Design 35, 596–602 (2012). doi:10.1016/j.matdes.2011.10.007

    Article  Google Scholar 

  • Bajpai, P.K., Singh, I., Madaan, J.: Frictional and adhesive wear performance of natural fibre reinforced polypropylene composites. P. I. Mech. Eng. J.-J. Eng. 227(J4), 385–392 (2013). doi:10.1177/1350650112461868

    Google Scholar 

  • Bajpai, P.K., Singh, I., Madaan, J.: Development and characterization of PLA-based green composites: a review. J. Thermoplast. Compos. 27(1), 52–81 (2014). doi:10.1177/0892705712439571

    Article  Google Scholar 

  • Bartholmai, M., Schartel, B.: Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv. Technol. 15(7), 355–364 (2004)

    Article  Google Scholar 

  • Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., Ahmad, A.: Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohyd. Polym. 122, 202–211 (2015). doi:10.1016/j.carbpol.2014.12.081

    Article  Google Scholar 

  • Bensadoun, F., Kchit, N., Billotte, C., Bickerton, S., Trochu, F., Ruiz, E.: A study of nanoclay reinforcement of biocomposites made by liquid composite molding. Int. J. Polym. Sci. (2011)

    Google Scholar 

  • Bilotti, E., Fischer, H., Peijs, T.: Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties. J. Appl. Polym. Sci. 107(2), 1116–1123 (2008)

    Article  Google Scholar 

  • Biswal, M., Mohanty, S., Nayak, S.K.: Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J. Appl. Polym. Sci. 114(6), 4091–4103 (2009). doi:10.1002/app.31121

    Article  Google Scholar 

  • Biswal, M., Mohanty, S., Nayak, S.K.: Mechanical, thermal and dynamic-mechanical behavior of banana fiber reinforced polypropylene nanocomposites. Polym. Compos. 32(8), 1190–1201 (2011). doi:10.1002/pc.21138

    Article  Google Scholar 

  • Biswal, M., Mohanty, S., Nayak, S.K.: Banana fiber-reinforced polypropylene nanocomposites: effect of fiber treatment on mechanical, thermal, and dynamic-mechanical properties. J. Thermoplast. Compos. 25(6), 765–790 (2012). doi:10.1177/0892705711413626

    Article  Google Scholar 

  • Cantero, G., Arbelaiz, A., Mugika, F., Valea, A., Mondragon, I.: Mechanical behavior of wood/polypropylene composites: effects of fibre treatments and ageing processes. J. Reinf. Plast. Compos. 22(1), 37–50 (2003)

    Article  Google Scholar 

  • Carrasco, F., Pérez-Maqueda, L.A., Sánchez-Jiménez, P., Perejón, A., Santana, O., Maspoch, M.L.: Enhanced general analytical equation for the kinetics of the thermal degradation of poly (lactic acid) driven by random scission. Polym. Testing 32(5), 937–945 (2013)

    Article  Google Scholar 

  • Carreau, P.J., De Kee, D., Chhabra, R.P.: Rheology of Polymeric Systems: Principles and Applications. Hanser Publishers Munich (1997)

    Google Scholar 

  • Chen, J.M., Yan, N.: Mechanical properties and dimensional stability of organo-nanoclay modified biofiber polymer composites. Compos. Part B-Eng. 47, 248–254 (2013). doi:10.1016/j.compositesb.2012.11.015

    Article  Google Scholar 

  • Chen, Z., Wu, W.P., Chen, Z.F., Cong, X.N., Qiu, J.L.: Microstructural characterization on ZrC doped carbon/carbon composites. Ceram. Int. 38(1), 761–767 (2012). doi:10.1016/j.ceramint.2011.08.002

    Article  Google Scholar 

  • Chen, Z., Chen, Z., Yang, Z., Hu, J., Yang, Y., Chang, L., Lee, L.J., Xu, T.: Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material. Energy 93(Part 1), 945–954 (2015a). doi:10.1016/j.energy.2015.08.105

    Article  Google Scholar 

  • Chen, Z., Wu, C., Yang, Y., Shi, J., Hu, J., Yang, Z., Chen, Z.: Synthesis and drug delivery of mesoporous silica nanoparticles for cancer therapy. Eur. J. BioMed. Res. 1(3), 30–36 (2015b)

    Article  Google Scholar 

  • Di Maio, E., Iannace, S., Sorrentino, L., Nicolais, L.: Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer 45(26), 8893–8900 (2004). doi:10.1016/j.polymer.2004.10.037

    Article  Google Scholar 

  • Doyle, C.: Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6(24), 639–642 (1962)

    Article  Google Scholar 

  • Duran, J., Ramos-Tejada, M., Arroyo, F., Gonzalez-Caballero, F.: Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction. J. Colloid Interface Sci. 229(1), 107–117 (2000)

    Article  Google Scholar 

  • Faruk, O., Matuana, L.M.: Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos. Sci. Technol. 68(9), 2073–2077 (2008). doi:10.1016/j.compscitech.2008.03.004

    Article  Google Scholar 

  • Feng, Y., Wang, B., Wang, F., Zhao, Y., Liu, C., Chen, J., Shen, C.: Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. Polym. Degrad. Stab. 107, 129–138 (2014)

    Article  Google Scholar 

  • Flynn, J.: The isoconversional method for determination of energy of activation at constant heating rates: corrections for the Doyle approximation. J. Therm. Anal. Calorim. 27(1), 95–102 (1983)

    Article  Google Scholar 

  • Flynn, J.H., Wall, L.A.: General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Stand. 70(6), 487–523 (1966)

    Article  Google Scholar 

  • Fornes, T., Yoon, P., Hunter, D., Keskkula, H., Paul, D.: Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43(22), 5915–5933 (2002)

    Article  Google Scholar 

  • Fornes, T.D., Paul, D.R.: Crystallization behavior of nylon 6 nanocomposites. Polymer 44(14), 3945–3961 (2003). doi:10.1016/S0032-3861(03)00344-6

    Article  Google Scholar 

  • Frankowski, D.J., Capracotta, M.D., Martin, J.D., Khan, S.A., Spontak, R.J.: Stability of organically modified montmorillonites and their polystyrene nanocomposites after prolonged thermal treatment. Chem. Mater. 19(11), 2757–2767 (2007)

    Article  Google Scholar 

  • Friedman, H.L.: Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. In: Journal of Polymer Science Part C: Polymer Symposia, vol. 1, pp 183–195. Wiley Online Library (1964)

    Google Scholar 

  • Gu, R., Kokta, B.V., Michalkova, D., Dimzoski, B., Fortelny, I., Slouf, M., Krulis, Z.: Characteristics of wood–plastic composites reinforced with organo-nanoclays. J. Reinf. Plast. Compos. (2010)

    Google Scholar 

  • Guo, L., Chen, F.X., Zhou, Y.S., Liu, X., Xu, W.L.: The influence of interface and thermal conductivity of filler on the nonisothermal crystallization kinetics of polypropylene/natural protein fiber composites. Compos. Part B-Eng. 68, 300–309 (2015). doi:10.1016/j.compositesb.2014.09.004

    Article  Google Scholar 

  • Halpin, J.C., Kardos, J.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)

    Article  Google Scholar 

  • Han, G., Lei, Y., Wu, Q., Kojima, Y., Suzuki, S.: Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J. Polym. Environ. 16(2), 123–130 (2008). doi:10.1007/s10924-008-0094-7

    Article  Google Scholar 

  • Haq, M., Burgueno, R., Mohanty, A.K., Misra, M.: Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos. Sci. Technol. 68(15–16), 3344–3351 (2008). doi:10.1016/j.compscitech.2008.09.007

    Article  Google Scholar 

  • Haq, M., Burgueño, R., Mohanty, A.K., Misra, M.: Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: tensile properties, efficiency, and limits. Compos. A Appl. Sci. Manuf. 40(4), 394–403 (2009)

    Article  Google Scholar 

  • Hetzer, M., De Kee, D.: Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem. Eng. Res. Des. 86(10), 1083–1093 (2008)

    Article  Google Scholar 

  • Hetzer, M., Naiki, J., Zhou, H., Poloso, T., De Kee, D.: Thermal dependence of Young’s modulus of wood/polymer/clay nanocomposites. J. Compos. Mater. 43(20), 2285–2301 (2009)

    Article  Google Scholar 

  • Huang, X., Netravali, A.: Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos. Sci. Technol. 67(10), 2005–2014 (2007)

    Article  Google Scholar 

  • Islam, M.S., Ahmad, M.B., Hasan, M., Aziz, S.A., Jawaid, M., Haafiz, M.M., Zakaria, S.A.: Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. BioResources 10(1), 1394–1407 (2015)

    Article  Google Scholar 

  • Kord, B.: Effect of nanoparticles loading on properties of polymeric composite based on Hemp Fiber/Polypropylene. J. Thermoplast. Compos. 25(7), 793–806 (2012). doi:10.1177/0892705711412815

    Article  Google Scholar 

  • Kord, B., Kiakojouri, S.M.H.: Effect of nanoclay dispersion on physical and mechanical properties of wood flour/polypropylene/glass fiber hybrid composites. Bioresources 6(2), 1741–1751 (2011)

    Google Scholar 

  • Kovacevic, Z., Bischof, S., Fan, M.: The influence of Spartium junceum L. fibres modified with montmorrilonite nanoclay on the thermal properties of PLA biocomposites. Compos. B Eng. 78, 122–130 (2015)

    Article  Google Scholar 

  • Kumar, V., Sharma, N.K., Kumar, R.: Dielectric, mechanical, and thermal properties of bamboo-polylactic acid bionanocomposites. J. Reinf. Plast. Comp. 32(1), 42–51 (2013). doi:10.1177/0731684412461290

    Article  Google Scholar 

  • Lee, J.-H., Jung, D., Hong, C.-E., Rhee, K.Y., Advani, S.G.: Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Compos. Sci. Technol. 65(13), 1996–2002 (2005)

    Article  Google Scholar 

  • Lee, Y.H., Kuboki, T., Park, C.B., Sain, M.: The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites. Polym. Eng. Sci. 51(5), 1014–1022 (2011)

    Article  Google Scholar 

  • Lee, Y.H., Kuboki, T., Park, C.B., Sain, M., Kontopoulou, M.: The effects of clay dispersion on the mechanical, physical, and flame-retarding properties of wood fiber/polyethylene/clay nanocomposites. J. Appl. Polym. Sci. 118(1), 452–461 (2010). doi:10.1002/app.32045

    Article  Google Scholar 

  • Lei, Y., Wu, Q., ClemonS, C.M., Yao, F., Xu, Y.: Influence of nanoclay on properties of HDPE/Wood composites. J. Appl. Polym. Sci. 106(6), 3958–3966 (2007). doi:10.1002/app.27048

    Article  Google Scholar 

  • Lenes, M., Gregersen, Ø.W.: Effect of surface chemistry and topography of sulphite fibres on the transcrystallinity of polypropylene. Cellulose 13(4), 345–355 (2006)

    Article  Google Scholar 

  • Leng, J., Lau, A.K.T.: Multifunctional Polymer Nanocomposites. CRC Press, Boca Raton (2011)

    Google Scholar 

  • Mallick, P.K.: Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd edn. CRC Press, Boca Raton, FL (2008)

    Google Scholar 

  • Marcovich, N.E., Reboredo, M.M., Kenny, J., Aranguren, M.I.: Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheolog. Acta 43(3), 293–303 (2004)

    Article  Google Scholar 

  • Mohanty, A.K., Misra, M., Drzal, L.T.: Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis, Boca Raton, FL (2005)

    Book  Google Scholar 

  • Morote-Martínez, V., Torregrosa-Coque, R., Martín-Martínez, J.M.: Addition of unmodified nanoclay to improve the performance of unsaturated polyester resin coating on natural stone. Int. J. Adhes. Adhes. 31(3), 154–163 (2011)

    Article  Google Scholar 

  • Morrison, F.A.: Understanding Rheology. Oxford University Press (2001)

    Google Scholar 

  • Mravčáková, M., Boukerma, K., Omastová, M., Chehimi, M.M.: Montmorillonite/polypyrrole nanocomposites. The effect of organic modification of clay on the chemical and electrical properties. Mater. Sci. Eng. C 26(2), 306–313 (2006)

    Article  Google Scholar 

  • Najafi, A., Kord, B., Abdi, A., Ranaee, S.: The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/reed flour nanocomposites. J. Thermoplast. Compos. 25(6), 717–727 (2012). doi:10.1177/0892705711412813

    Article  Google Scholar 

  • Nazare, S., Kandola, B., Horrocks, A.: Flame-retardant unsaturated polyester resin incorporating nanoclays. Polym. Adv. Technol. 17(4), 294–303 (2006)

    Article  Google Scholar 

  • Nguong, C., Lee, S., Sujan, D.: A review on natural fibre reinforced polymer composites. World Acad. Sci. Eng. Technol. 2013, 1123–1130 (2013)

    Google Scholar 

  • Nourbakhsh, A., Ashori, A.: Influence of nanoclay and coupling agent on the physical and mechanical properties of polypropylene/bagasse nanocomposite. J. Appl. Polym. Sci. 112(3), 1386–1390 (2009). doi:10.1002/app.29499

    Article  Google Scholar 

  • Osman, M.A., Mittal, V., Morbidelli, M., Suter, U.W.: Epoxy-layered silicate nanocomposites and their gas permeation properties. Macromolecules 37(19), 7250–7257 (2004)

    Article  Google Scholar 

  • Ozawa, T.: A new method of analyzing thermogravimetric data. B Chem. Soc. Jpn. 38(11), 1881–1886 (1965)

    Article  Google Scholar 

  • Park, S.-J., Li, K., Hong, S.-K.: Preparation and Characterization of layered silicate-modified ultrahigh-molecular-weight polyethylene nanocomposites technology. 8, 10 (2005)

    Google Scholar 

  • Patel, M., Bastioli, C., Marini, L., Würdinger, E.: Life‐cycle assessment of bio‐based polymers and natural fiber composites. Biopolymers (2005)

    Google Scholar 

  • Prasad, A.V.R., Rao, K.B., Rao, K.M., Ramanaiah, K., Gudapati, S.P.K.: Influence of nanoclay on the mechanical performance of wild cane grass fiber-reinforced polyester nanocomposites. Int. J. Polym. Anal. Ch. 20(6), 541–556 (2015). doi:10.1080/1023666X.2015.1053335

    Article  Google Scholar 

  • Pratheep Kumar, A., Pal Singh, R.: Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J. Appl. Polym. Sci. 104(4), 2672–2682 (2007)

    Google Scholar 

  • Qiu, R., Ren, X., Fifield, L.S., Simmons, K.L., Li, K.: Hemp-fiber-reinforced unsaturated polyester composites: optimization of processing and improvement of interfacial adhesion. J. Appl. Polym. Sci. 121(2), 862–868 (2011)

    Article  Google Scholar 

  • Qiu, R., Ren, X., Li, K.: Effect of fiber modification with a novel compatibilizer on the mechanical properties and water absorption of hemp-fiber-reinforced unsaturated polyester composites. Polym. Eng. Sci. 52(6), 1342–1347 (2012)

    Article  Google Scholar 

  • Rahman, M.R., Hamdan, S., Hashim, D.M.A., Islam, M.S., Takagi, H.: Bamboo fiber polypropylene composites: effect of fiber treatment and nano clay on mechanical and thermal properties. J. Vinyl Add. Tech. (2014). doi:10.1002/vnl.21407

    Google Scholar 

  • Rajini, N., Winowlin Jappes, J., Rajakarunakaran, C., Siva, I.: Tensile and flexural properties of MMT-clay/unsaturated polyester using robust design concept. In: Nano Hybrids, pp. 87–101. Trans Tech Publ (2012)

    Google Scholar 

  • Rajini, N., Jappes, J.W., Jeyaraj, P., Rajakarunakaran, S., Bennet, C.: Effect of montmorillonite nanoclay on temperature dependence mechanical properties of naturally woven coconut sheath/polyester composite. J. Reinf. Plast. Compos. 32(11), 811–822 (2013a)

    Article  Google Scholar 

  • Rajini, N., Jappes, J.W., Rajakarunakaran, S., Jeyaraj, P.: Dynamic mechanical analysis and free vibration behavior in chemical modifications of coconut sheath/nano-clay reinforced hybrid polyester composite. J. Compos. Mater. 47(24), 3105–3121 (2013b)

    Article  Google Scholar 

  • Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)

    Article  Google Scholar 

  • Ray, S.S., Yamada, K., Okamoto, M., Ueda, K.: Control of biodegradability of polylactide via nanocomposite technology. Macromol. Mater. Eng. 288(3), 203–208 (2003)

    Article  Google Scholar 

  • Ren, X., Qiu, R., Li, K.: Modifications of kenaf fibers with N-methylol acrylamide for production of kenaf-unsaturated polyester composites. J. Appl. Polym. Sci. 125(4), 2846–2853 (2012a)

    Article  Google Scholar 

  • Ren, X., Qiu, R., Fifield, L.S., Simmons, K.L., Li, K.: Effects of surface treatments on mechanical properties and water resistance of kenaf fiber-reinforced unsaturated polyester composites. J. Adhes. Sci. Technol. 26(18–19), 2277–2289 (2012b)

    Google Scholar 

  • Ren, X., Li, K.: Investigation of vegetable-oil-based coupling agents for kenaf-fiber-reinforced unsaturated polyester composites. J. Appl. Polym. Sci. 128(2), 1101–1109 (2013)

    Article  Google Scholar 

  • Ren, X., Li, C., Li, K.: Investigation of acrylamide-modified melamine-formaldehyde resins as a compatibilizer for kenaf-unsaturated polyester composites. Polym. Eng. Sci. 53(8), 1605–1613 (2013)

    Article  Google Scholar 

  • Rout, J., Misra, M., Tripathy, S., Nayak, S., Mohanty, A.: The influence of fiber surface modification on the mechanical properties of coir-polyester composites. Polym. Compos. 22(4), 468 (2001)

    Article  Google Scholar 

  • Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Tech. 18(4), 351–363 (1999). doi:10.1002/(Sici)1098-2329(199924)18:4<351:Aid-Adv6>3.3.Co;2-O

    Article  Google Scholar 

  • Sajna, V.P., Mohanty, S., Nayak, S.K.: Hybrid green nanocomposites of poly(lactic acid) reinforced with banana fibre and nanoclay. J. Reinf. Plast. Comp. 33(18), 1717–1732 (2014). doi:10.1177/0731684414542992

    Article  Google Scholar 

  • Sattler, K.D.: Handbook of Nanophysics. Functional nanomaterials. Taylor & Francis, Boca Raton (2011)

    Google Scholar 

  • Shen, L., Lin, Y., Du, Q., Zhong, W., Yang, Y.: Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer 46(15), 5758–5766 (2005)

    Article  Google Scholar 

  • Shroff, R., Mavridis, H.: Long-chain-branching index for essentially linear polyethylenes. Macromolecules 32(25), 8454–8464 (1999)

    Article  Google Scholar 

  • Smart, G., Kandola, B.K., Horrocks, A.R., Nazare, S., Marney, D.: Polypropylene fibers containing dispersed clays having improved fire performance. Part II: Characterization of fibers and fabrics from PP–nanoclay blends. Polym. Adv. Technol. 19(6), 658–670 (2008)

    Article  Google Scholar 

  • Song, M., Wong, C., Jin, J., Ansarifar, A., Zhang, Z., Richardson, M.: Preparation and characterization of poly (styrene-co-butadiene) and polybutadiene rubber/clay nanocomposites. Polym. Int. 54(3), 560–568 (2005)

    Article  Google Scholar 

  • Tabari, H.Z., Nourbakhsh, A., Ashori, A.: Effects of nanoclay and coupling agent on the physico-mechanical, morphological, and thermal properties of wood flour/polypropylene composites. Polym. Eng. Sci. 51(2), 272–277 (2011). doi:10.1002/pen.21823

    Article  Google Scholar 

  • Taj, S., Munawar, M.A., Khan, S.: Natural fiber-reinforced polymer composites. Proc.-Pak. Acad. Sci. 44(2), 129 (2007)

    Google Scholar 

  • Tjong, S.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng.: R: Rep. 53(3), 73–197 (2006)

    Article  Google Scholar 

  • Uma Devi, L., Joseph, K., Manikandan Nair, K., Thomas, S.: Ageing studies of pineapple leaf fiber–reinforced polyester composites. J. Appl. Polym. Sci. 94(2), 503–510 (2004)

    Article  Google Scholar 

  • VP, S., Mohanty, S., Nayak, S.K.: A study on thermal degradation kinetics and flammability properties of poly (lactic acid)/banana fiber/nanoclay hybrid bionanocomposites. Polym. Compos. (2015)

    Google Scholar 

  • Wang, C.H., Shieh, Y.T., Nutt, S.: The effects of soft-segment molecular weight and organic modifier on properties of organic-modified MMT-PU nanocomposites. J. Appl. Polym. Sci. 114(2), 1025–1032 (2009)

    Article  Google Scholar 

  • Wang, Z., Massam, J., Pinnavaia, T.: Epoxy-clay nanocomposites. Polym.-Clay Nanocompos. 48 (2000)

    Google Scholar 

  • Withers, G.J., Yu, Y., Khabashesku, V.N., Cercone, L., Hadjiev, V.G., Souza, J.M., Davis, D.C.: Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organomodified nanoclays. Compos. Part B-Eng. 72, 175–182 (2015). doi:10.1016/j.compositesb.2014.12.008

    Article  Google Scholar 

  • Wu, Z., Zhou, C., Qi, R.: The preparation of phenolic resin/montmorillonite nanocomposites by suspension condensation polymerization and their morphology. Polym. Compos. 23(4), 634–646 (2002)

    Article  Google Scholar 

  • Xu, Y., Van Hoa, S.: Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68(3–4), 854–861 (2008). doi:10.1016/j.compscitech.2007.08.013

    Article  Google Scholar 

  • Yeh, S., Ortiz, D., Al-Mulla, A., Gupta, R.: Mechanical and thermal properties of wood/layered silicate/plastic composites. In: Proceedings of the 8th International Conference on Wood fiber-Plastic Composites (2005)

    Google Scholar 

  • Ying-Chen, Z., Hong-Yan, W., Yi-Ping, Q.: Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresour. Technol. 101(20), 7944–7950 (2010)

    Article  Google Scholar 

  • Yuan, Q., Awate, S., Misra, R.D.K.: Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur. Polym. J. 42(9), 1994–2003 (2006). doi:10.1016/j.eurpolymj.2006.03.012

    Article  Google Scholar 

  • Zafeiropoulos, N., Baillie, C., Matthews, F.: A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos. A Appl. Sci. Manuf. 32(3), 525–543 (2001)

    Article  Google Scholar 

  • Zhang, X., Xie, T., Yang, G.: Isothermal crystallization and melting behaviors of nylon 11/nylon 66 alloys by in situ polymerization. Polymer 47(6), 2116–2126 (2006)

    Article  Google Scholar 

  • Zhong, Y., Poloso, T., Hetzer, M., De Kee, D.: Enhancement of wood/polyethylene composites via compatibilization and incorporation of organoclay particles. Polym. Eng. Sci. 47(6), 797–803 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chen, Z., Kuang, T., Yang, Z., Ren, X. (2016). Effect of Nanoclay on Natural Fiber/Polymer Composites. In: Jawaid, M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0950-1_8

Download citation

Publish with us

Policies and ethics