Skip to main content

Biosurfactant: A Promising Approach Toward the Remediation of Xenobiotics, a Way to Rejuvenate the Marine Ecosystem

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

Xenobiotics – petroleum hydrocarbons, dyes, heavy metals, pesticides, and antifoulants like tributyltin (TBT) which are dispersed in the marine environment through various activities – have caused ecological and social catastrophes. Pesticides, metals, dyes, etc. used in agriculture and other industrial purposes eventually reach the sea through streams and rivers. The presence of these xenobiotics in the water bodies may lead to many serious health consequences as xenobiotics like heavy metals are mutagenic and carcinogenic in nature. Heavy metals are usually discharged from power generation industries, and some like mercury are an active component in many pesticides. Synthetic dyes and dry cleaning fluid like tetrachloroethylene used largely in dyeing and printing industries constitute one of the major organic pollutants. Polycyclic hydrocarbons and crude oil sludge are discharged into the marine environment as a result of offshore oil drilling, overflow from oil tanker, and ship accidents and as by-products of coal treatment. As a result of increasing public awareness on environmental pollution and the need for sustainable development, various research programs have been initiated for development of technologies to manage the xenobiotics. The use of surface-active biomolecules (biosurfactant) synthesized by microorganisms in bioremediation has been proposed in recent years and is gaining prominence due to their high potential in mobilization and solubilization of various pollutants. Biosurfactants such as rhamnolipid, sophorolipid, surfactin, and alasan produced by diverse species of Pseudomonas, Candida, Bacillus, and Acinetobacter, respectively, have been widely studied and reported for the remediation of hydrocarbons (e.g., phenanthrene, fluoranthene, pyrene, hexadecane, kerosene, and 1-methyl naphthalene) and heavy metals, e.g., cadmium and pesticides (endosulfan and beta-cypermethrin). Moreover, Bacillus subtilis and Bacillus licheniformis are well-known producers of biosurfactant employed in oil recovery and bioremediation. The biosurfactant seem to enhance the biodegradation of oils and lipids as a result of its emulsifying property. Owing to its biodegradability and low toxicity, they might serve as promising tool for the use in bioremediation of both organic and inorganic pollutants. This chapter provides an overview on the advances in the application of microbial biosurfactant in rejuvenating marine ecosystem and in combating the issues of xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader E, Nadjia L, Ahmed B (2011) Degradation study of phenazin neutral red from aqueous suspension by paper sludge. J Chem Eng Process Technol 2:109

    CAS  Google Scholar 

  • Abraham WR (1998) Novel glycine containing glycolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim Biophys Acta 1393:57–62

    Article  CAS  Google Scholar 

  • Akit J, Cooper DI, Manninen KI, Zajic JE (1981) Investigation of potential biosurfactant production among phytopathogenic Corynebacteria and related soil microbes. Curr Microbiol 6:145–150

    Article  CAS  Google Scholar 

  • Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-akhmari HS, Al-Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146

    Article  CAS  Google Scholar 

  • Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW (2014) The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 16(7):2267–2281

    Article  CAS  Google Scholar 

  • Arima K, Kaknuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N, Yeom IT (2010) Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Tech 7(4):639–652

    Article  CAS  Google Scholar 

  • Asimiea OA, Sam-Wobo SO (2011) The impact of hydrocarbon waste from brass oil terminal on the Phytoplankton and Periphyton communities of lower Brass River, Niger Delta, Nigeria. J Emerg Trends Eng Appl Sci 2:729–733

    CAS  Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose containing glycolipids. Prog Chem Fat Lipids 16:59–99

    Article  CAS  Google Scholar 

  • Awashti N, Kumar A, Makkar R, Cameotra S (1999) Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. J Environ Sci Health B 34:793–803

    Article  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    CAS  Google Scholar 

  • Baviere M, Degouy D, Lecourtier J (1994) Process for washing solid particles comprising a sophoroside solution. US Patent 5,326,407

    Google Scholar 

  • Bondarenko O, Rahman PKSM, Rahman TJ, Kahru A, Ivask A (2010) Effects of rhamnolipids from Pseudomonas aeruginosa DS10- 129 on luminescent bacteria: toxicity and modulation of cadmium bioavailability. Microb Ecol 59:588–600

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactants in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  Google Scholar 

  • British Petroleum (2010) Deepwater horizon accident investigation report. Golfo Do Mexico 192

    Google Scholar 

  • Burd G, Ward OP (1996) Bacterial degradation of polycyclic aromatic hydrocarbons on agar plates: the role of biosurfactants. Biotechnol Tech 10:371–374

    Article  CAS  Google Scholar 

  • Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54:1420

    CAS  Google Scholar 

  • Casas JA, García-Ochoa F (1999) Sophorolipid production by Candida bombicola: medium composition and culture methods. J Biosci Bioeng 88:488–494

    Article  CAS  Google Scholar 

  • Casas JA, Garcia de Lara S, Garcia-Ochoa F (1997) Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzym Microbiol Tech 21:221–229

    Article  CAS  Google Scholar 

  • Cassia R, Silva FS, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  CAS  Google Scholar 

  • Cavalero DA, Cooper DG (2003) The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol 103:31–41

    Article  CAS  Google Scholar 

  • Choi WJ, Choi H-G, Lee W-H (1996) Effects of ethanol and phosphate on emulsan production by Acinetobacter calcoaceticus RAG-1. J Biotechnol 45(3):217–225

    Article  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50(4):846–850

    CAS  Google Scholar 

  • Cooper DG, Cavalero DA (2003) The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC22214. J Biotechnol 103:31–41

    Article  CAS  Google Scholar 

  • Cooper DG, Paddock DA (1984) Production of biosurfactants from Torulopsis bombicola. Appl Environ Microbiol 47:173–176

    CAS  Google Scholar 

  • Cooper DG, Zajic JE, Gerson DE (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10

    CAS  Google Scholar 

  • Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from B subtilis by continuous product removal and metal cation addition. Appl Environ Microbiol 42:408–412

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 42:1191–1199

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Dziegielewska E, Adamczak M (2013) Evaluation of waste products in the synthesis of surfactants by yeasts. Chem Pap 67:1113–1122

    Article  CAS  Google Scholar 

  • Edward JR, Hayashi JA (1965) Structure of rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111:415–421

    Article  Google Scholar 

  • Elaziouti A, Laouedj N, Ahmed B (2011) Effect of pH solution on the optical properties of cationic dyes in dye/maghnia montmorillonite suspensions. J Chem Eng Process Technol 2:113

    CAS  Google Scholar 

  • Flasz A, Rocha CA, Mosquera B, Sajo C (1998) A comparative study of the toxicity of a synthetic surfactant and one produced by Pseudomonas aeruginosa ATCC55925. Med Sci Res 26:181–185

    CAS  Google Scholar 

  • Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2008) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627

    Article  CAS  Google Scholar 

  • Garcia-Junco M, De Olmedo E, Ortega-Calvo JJ (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant producing bacterium Pseudomonas aeruginosa 19SJ. Environ Microbiol 3:561–569

    Article  CAS  Google Scholar 

  • Gautam KK, Tyagi VK (2006) Microbial surfactants: a review. J Oleo Sci 55:155–166

    Article  CAS  Google Scholar 

  • Goldman SS, Rubinovitz YC, Rosenberg E, Gutnick DL (1982) Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting material. Appl Environ Microbiol 44(1):165–170

    CAS  Google Scholar 

  • Gordon L, Dobson ADW (2001) Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation 12:393–400

    Article  CAS  Google Scholar 

  • Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar Pollut Bull 86:361–366

    Article  CAS  Google Scholar 

  • Hommel RK, Stuwer O, Stubrerd W, Kleber HP (1987) Production of water soluble surface active exolipids by Torulopsis apicola. Appl Microbiol Biotechnol 26:199–205

    Article  CAS  Google Scholar 

  • Hong JJ, Yang SM, Lee CH, Choi YK, Kajiuchi T (1998) Ultrafiltration of divalent metal cations from aqueous solution using polycarboxylic acid type biosurfactants. J Colloid Interf Sci 202:63–73

    Article  CAS  Google Scholar 

  • Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol 6:243–248

    Article  CAS  Google Scholar 

  • Husain DR, Goutx M, Acquaviva M, Gilewicz M, Bertrand JC (1997) The effect of temperature on eicosane substrate uptake modes by a marine bacterium Pseudomonas nautica strain 617: relationship with the biochemical content of cells and supernatants. World J Microbiol Biotechnol 13:587–590

    Article  CAS  Google Scholar 

  • Inoue S, Ito S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol Lett 4:3–8

    Article  CAS  Google Scholar 

  • Ishigami Y, Yamazaki S, Gama Y (1983) Surface active properties of biosoap from spiculisporic acid. J Colloid Interf Sci 94:131–139

    Article  CAS  Google Scholar 

  • Ishigami Y, Zhang Y, Ji F (2000) Spiculisporic acid functional development of biosurfactants. Chim Oggi 18:32–34

    CAS  Google Scholar 

  • Itoh S, Suzuki T (1974) Fructose-lipids of Arthrobacter, Corynebacteria, Nocardia and Mycobacteria grown on fructose. Agric Biol Chem 38:1443–1449

    Article  CAS  Google Scholar 

  • Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:1–12

    Article  CAS  Google Scholar 

  • Jennema GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983) A halotolerant, biosurfactants-producing Bacillus species potentially useful for enhanced oil recovery. Dev Ind Microbiol 24:485–492

    Google Scholar 

  • Kanga S, Bonner J, Page C, Mills M, Autenrieth A (1997) Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environ Sci Technol 31:556–561

    Article  CAS  Google Scholar 

  • Kim SY, Oh DK, Kim JH (1997) Biological modification of hydrophobic group in Acinetobacter calcoaceticus RAG-1 Emulsan. J Ferment Bioeng 84:162–164

    Article  CAS  Google Scholar 

  • Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369

    Article  CAS  Google Scholar 

  • Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737

    Article  CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial active lipids from Rhodococcus erythropolis grown on –alkane. Appl Environ Microbiol 44:864–870

    CAS  Google Scholar 

  • Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  CAS  Google Scholar 

  • Lakshmipathy TD, Prasad ASA, Kannabiran K (2010) Production of biosurfactant and heavy metal resistance activity of Streptomyces Sp VITDDK3-a novel halo tolerant actinomycetes isolated from saltpan soil. Adv Biol Res 4(2):108–115

    CAS  Google Scholar 

  • Lalithakumari D (2011) Microbes: “A Tribute” to clean environment

    Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  Google Scholar 

  • Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    Article  CAS  Google Scholar 

  • Lesik OY, Karpenko EV, Elysseev SA, Turovsky AA (1989) The surface-active and emulsifying properties of Candida lipolytica Y-917 grown on n-hexadecane. Microbiol J 51:56–59

    CAS  Google Scholar 

  • Liang YS, Yuan XZ, Zeng GM, Hu CL et al (2010) Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21(4):615–624

    Article  CAS  Google Scholar 

  • Lima AS, Alegre RM (2009) Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913. Braz Arch Biol Technol 52:285–290

    Article  CAS  Google Scholar 

  • Liu XL, Zeng GM, Tang L, Zhong H et al (2008) Effects of dirhamnolipid and SDS on enzyme production by Phanerochaete chrysosporium in submerged fermentation. Process Biochem 43:1300–1303

    Article  CAS  Google Scholar 

  • Liu ZF, Zeng GM, Wang J, Zhong H, Ding Y, Yuan XZ (2010) Effects of monorhamnolipid and Tween 80 on the degradation of phenol by Candida tropicalis. Process Biochem 45:805–809

    Article  CAS  Google Scholar 

  • Lu XX, Zhang X, Li GH, Zhang WH (2003) Production of biosurfactant and its role in the biodegradation of oil hydrocarbons. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(3):483–492

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. Appl Microbiol Biotechnol 1:1–5

    Google Scholar 

  • Maneerat S (2005) Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol 27(6):1263–1272

    Google Scholar 

  • Maneerat S, Phetrong K (2007) Isolation of biosurfactants producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791

    Google Scholar 

  • Marcoux J (2000) Optimization of high-molecular-weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol 88:655–662

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2000) Effects of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environ Sci Tech 34:4923–4930

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2001) Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous and soil slurries. J Agric Food Chem 49:3296–3303

    Article  CAS  Google Scholar 

  • Matsuyama T, Tanikawa T, Nakagawa Y (2011) Serrawettins and other surfactants produced by Serratia. Biosurfactants Microbiol Monogr 20:2093–2120

    Google Scholar 

  • Mclnerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 5:95–102

    Article  Google Scholar 

  • Miller RM, Zhang Y (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. Methods Biotechnol 2:59–66

    CAS  Google Scholar 

  • Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-l, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng 74:255–261

    Article  CAS  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    CAS  Google Scholar 

  • Moussa TAA, Ahmed GM, Abdel-hamid SMS (2006) Optimization of cultural conditions for biosurfactants production from Nocardia amarae. J Appl Sci Res 2:844–850

    Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  Google Scholar 

  • Mulligan CN, Gibbs BF (1990) Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol 47:23–29

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (1999) Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci Tech 33:3812–3820

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Article  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–774

    CAS  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  Google Scholar 

  • Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of biosurfactant produced by Pseudoxanthomonas sp PNK-04 and its application in bioremediation. Int Biodeterior Biodegrad 63(1):73–79

    Article  CAS  Google Scholar 

  • Neilson JW, Artiola JF, Maier RM (2003) Characterization of lead removal from contaminated soils by non-toxic soil-washing agents. J Environ Qual 32:899–908

    Article  CAS  Google Scholar 

  • Nnamchi CI, Obeta JAN, Ezeogu LI (2006) Isolation and characterization of some polycyclic aromatic hydrocarbon degrading bacteria from Nsukka soils in Nigeria. Int J Environ Sci Tech 3:181–190

    Article  CAS  Google Scholar 

  • Noordman WH, Wachter JJJ, de Boer GJ, Janssen DB (2002) The enhancement by biosurfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212

    Article  CAS  Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp strain LP1. World J Microbiol Biotechnol 25:1615–1623

    Article  CAS  Google Scholar 

  • Park KS, Sims RC, Dupont RR (1990) Transformation of PAHs in soil systems. J Environ Eng 116:632–640

    Article  CAS  Google Scholar 

  • Pei XH, Zhan XH, Wang SM, Lin YS, Zhou LX (2010) Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere 20:771–779

    Article  CAS  Google Scholar 

  • Persson A, Osterberg E, Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl Microbiol Biotechnol 29:1–4

    Article  CAS  Google Scholar 

  • Pesce L (2002) A biotechnological method for the regeneration of hydrocarbons from dregs and muds, on the base of biosurfactants. World Patent 02/062: 495

    Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutoas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168

    Article  CAS  Google Scholar 

  • Ramani K, Chandan Jain S, Mandal AB, Sekaran G (2012) Microbial induced lipoprotein biosurfactant from slaughterhouse lipid waste and its application to the removal of metal ions from aqueous solution. Colloids Surf B: Biointerfaces 97:254–263

    Article  CAS  Google Scholar 

  • Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresource Technol 101:7980–7983

    Article  CAS  Google Scholar 

  • Report on health effects of endosulfan and progress of rehabilitation activities in Kerala, Department of Health and family welfare, Government of Kerala. 20th Apr 2011

    Google Scholar 

  • Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T 1. Biotechnol Lett 11:871–874

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Mini review: natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular- mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol 37:402

    CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988a) Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 54(2):317–322

    CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988b) Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54:323

    CAS  Google Scholar 

  • Rufino RD, Sarubbo LA, Campos-Takaki GM (2007) Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23:729–734

    Article  CAS  Google Scholar 

  • Sampath R, Venkatakrishnan H, Ravichandran V, Chaudhury RR (2012) Biochemistry of TBT-degrading marine pseudomonads isolated from Indian coastal waters. Water Air Soil Pollut 223:99–106

    Article  CAS  Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during napthalene biodegradation. Appl Environ Microbiol 66:4585–4588

    Article  CAS  Google Scholar 

  • Sarubbo LA, Farias CB, Campos-Takaki GM (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 54:68–73

    Article  CAS  Google Scholar 

  • Shulga AN, Karpenko EV, Eliseev SA, Turovsky AA, Koronelli TV (1990) Extracellular lipids and surface-active properties of the bacterium Rhodococcus erythropolis depending on the source of carbon nutrition. Mikrobiologya 59:443–447

    CAS  Google Scholar 

  • Silva EJ, Rocha e Silva NMP, Rufino RD, Luna JM, Silva RO, Sarubbo LA (2014) Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids Surf B: Biointerfaces 117:36–41

    Article  CAS  Google Scholar 

  • Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, CamposTakaki GM, Leite LFC, Sarubbo LA (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917

    Article  CAS  Google Scholar 

  • Sobrinho HB, Luna JM, Rufino RD, Porto ALF, Sarubbo LA (2013) Biosurfactants: classification, properties and environmental applications. In Recent Dev Biotechnol 11:1–29

    Google Scholar 

  • Sriram MI, Gayathiri S, Gnanaselvi U, Jenifer PS, Mohan Raj S, Gurunathan S (2011) Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresour Technol 102:9291–9295

    Article  CAS  Google Scholar 

  • Suzuki T, Tanaka H, Itoh I (1974) Sucrose lipids of Arthrobacteria, Corynebacteria and Nocardia grown on sucrose. Agric Biol Chem 33:190–195

    Article  Google Scholar 

  • Thanomsub B, Watcharachaipong T, Chotelersak K, Arunrattiyakorn P, Nitoda T et al (2004) Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol 96:588–592

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresour Technol 102:772–778

    Article  CAS  Google Scholar 

  • Thimon L, Peypoux F, Michel G (1992) Interactions of surfactin, a biosurfactant from Bacillus subtilis with inorganic cations. Biotechnol Lett 14:713–718

    Article  CAS  Google Scholar 

  • Thomas CP, Duvall ML, Robertson EP, Barrett KB, Bala GA (1993) Surfactant-based EOR mediated by naturally occurring microorganisms. Soc Pet Eng 11:285–291

    Google Scholar 

  • Van Dyke MI, Lee H, Trevors JT (1991) Applications of microbial surfactants. Biotechnol Adv 9:141–152

    Article  Google Scholar 

  • Varsha YM, Naga Deepthi CH, Chenna S (2011) An emphasis on xenobiotic degradation in environmental clean up. J Bioremed Biodegrad S11:001

    Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactant, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  Google Scholar 

  • Williams K (2009) Biosurfactants for cosmetic applications: overcoming production challenges. Basic Biotechnol 5:78–83

    Google Scholar 

  • Yakimov M, Amro M, Bock M et al (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Petrol Sci Eng 18:147–160

    Article  CAS  Google Scholar 

  • Yamane M, Toyo T, Inoue K, Sakai T, Kaneko Y, Nishiyama N (2008) Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment. J Oleo Sci 57:529–538

    Article  CAS  Google Scholar 

  • Yeung CW, Law BA, Milligan TG, Lee K, Whyte LG, Greer CW (2011) Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar Pollut Bull 62:2095–2105

    Article  CAS  Google Scholar 

  • Zajic JE, Guignard H, Gerson DE (1977) Emulsifying and surface active agents from Corynebacterium hydrocarboclastus. Biotechnol Bioeng 19:1285–1301

    Article  CAS  Google Scholar 

  • Zeng G, Liu Z, Zhong H, Li J, Yuan X, Fu H, Ding Y, Wang J, Zhou M (2011) Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl Microbiol Biotechnol 90:1155–1161

    Article  CAS  Google Scholar 

  • Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102:7139–7146

    Article  CAS  Google Scholar 

  • Zinjarde SS, Pant A (2002) Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42(1):67–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhardha Busi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Busi, S., Rajkumari, J. (2017). Biosurfactant: A Promising Approach Toward the Remediation of Xenobiotics, a Way to Rejuvenate the Marine Ecosystem. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_6

Download citation

Publish with us

Policies and ethics