Skip to main content

On the Stability of a Variable Step Exponential Splitting Method for Solving Multidimensional Quenching-Combustion Equations

  • Conference paper
  • First Online:
Modern Mathematical Methods and High Performance Computing in Science and Technology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 171))

Abstract

This paper concerns the numerical stability of a splitting scheme for solving the three-dimensional degenerate quenching-combustion equation. The diffusion-type nonlinear equation possess highly nonlinear source terms, and is extremely important to the study of numerical combustions. Arbitrary fixed nonuniform spatial grids, which are not necessarily symmetric, are considered in our investigation. The numerical solution is advanced through a semi-adaptive exponential splitting strategy. The temporal adaptation is achieved via a suitable arc-length monitoring mechanism. Criteria for preserving the linear numerical stability of the decomposition method is proven under the spectral norm. A new stability criterion is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acker, A., Kawohl, B.: Remarks on quenching. Nonlinear Anal. 13, 53–61 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acker, A., Walter, W.: The quenching problem for nonlinear parabolic differential equations. Ordinary and Partial Differential Equations. Lecture Notes in Mathematics, vol. 564, pp. 1–12. Springer, New York (1976)

    Chapter  Google Scholar 

  3. Bebernes, J., Eberly, D.: Mathematical Problems from Combustion Theory. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  4. Beauregard, M., Sheng, Q.: An adaptive splitting approach for the quenching solution of reaction-diffusion equations over nonuniform grids. J. Comp. Appl. Math. 241, 30–44 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, W., Huang, W., Russell, R.D.: A study of monitor functions for two-dimensional adaptive mesh generation. SIAM J. Sci. Comput. 20, 1978–1994 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, C.Y., Ke, L.: Parabolic quenching for nonsmooth convex domains. J. Math. Anal. Appl. 186, 52–65 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, H., Lin, P., Sheng, Q., Tan, R.: Solving degenerate reaction-diffusion equations via variable step Peaceman-Rachford splitting. SIAM J. Sci. Comput. 25, 1273–1292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coyle, J.M., Flaherty, J.E., Ludwig, R.: On the stability of mesh equidistribution strategies for time-dependent partial differential equations. J. Comput. Phys. 62, 26–39 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawarada, H.: On solutions of initial-boundary value problems for \(u_t=u_{xx}+1/(1-u),\). Publ. Res. Inst. Math. Sci. 10, 729–736 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lang, J., Walter, A.: An adaptive Rothe method for nonlinear reaction-diffusion systems. Appl. Numer. Math. 13, 135–146 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Levine, H.A.: Quenching, nonquenching, and beyond quenching for solutions of some parabolic equations. Ann. Math. Pure. Appl. 4, 243–260 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ockendon, H.: Channel flow with temperature-dependent viscosity and internal viscous dissipation. J. Fluid Mech. 93, 737–746 (1979)

    Article  MATH  Google Scholar 

  13. Schatzman, M.: Stability of the Peaceman-Rachford approximation. J. Funct. Anal. 162, 219–255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sheng, Q.: Exponential Splitting Methods for Partial Differential Equations, Ph.D. Dissertation, DAMTP, Cambridge University (1990)

    Google Scholar 

  15. Sheng, Q.: Adaptive decomposition finite difference methods for solving singular problems. Front. Math. China 4, 599–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sheng, Q.: The ADI Methods. Encyclopedia of Applied and Computational Mathematics. Springer Verlag GmbH, Heidelberg (2015)

    Google Scholar 

  17. Sheng, Q.: ADI, LOD and modern decomposition methods for certain multiphysics applications. J Algorithms Comput. Technol. 9, 105–120 (2015)

    Article  MathSciNet  Google Scholar 

  18. Sheng, Q., Khaliq, A.: Linearly implicit adaptive schemes for singular reaction-diffusion equations. In: Vande Wouwer, A., Saucez, Ph., Schiesser, W.E. (eds.) Adaptive Method of Lines. Capman & Hall/CRC, London (2001)

    Google Scholar 

  19. Sheng, Q., Khaliq, A.: A revisit of the semi-adaptive method for singular degenerate reaction-diffusion equations. East Asia J. Appl. Math. 2, 185–203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Twizell, E.H., Wang, Y., Price, W.G.: Chaos-free numerical solutions of reaction-diffusion equations. Proc. R. Soc. London Sect. A 430, 541–576 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Padgett, J.L., Sheng, Q. (2016). On the Stability of a Variable Step Exponential Splitting Method for Solving Multidimensional Quenching-Combustion Equations. In: Singh, V., Srivastava, H., Venturino, E., Resch, M., Gupta, V. (eds) Modern Mathematical Methods and High Performance Computing in Science and Technology. Springer Proceedings in Mathematics & Statistics, vol 171. Springer, Singapore. https://doi.org/10.1007/978-981-10-1454-3_13

Download citation

Publish with us

Policies and ethics