Skip to main content

Persistent Luminescence Nanomaterials for Biomedical Applications: A Quick Grasp of the Trend

  • Chapter
  • First Online:
Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Abstract

Persistent luminescence nanomaterials (PLNMs) have recently come into limelight due to their remarkably long emission lifetime that is excitable ex vivo/in vivo and emissive in biological windows. All this potentiates themselves for better biodistribution mapping, pharmacokinetic evaluation, as well as longitudinal measurement than any other imaging counterparts. Upon combination with other modalities, multifunctional PLNMs have also been reported, such as photodynamic therapy, drug delivery, and bioanalytical sensing. In this chapter, we attempt to introduce readers from a newcomer perspective to the historical development, design and optimization principles, and potential bioapplications of PLNMs, hoping that you can appreciate the long afterglow and, as the chapter title, quickly grasp the trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey EN (1957) History of Luminescence. The American Philosophical Society, Philadelphia

    Google Scholar 

  2. Valeur B, Berberan-Santos MN (2013) Molecular Fluorescence: Principles and Application, 2 edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Demtröder W (2008) Laser Spectroscopy Volume 1 Basic Principles. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Medintz I, Hildebrandt N (2013) FRET – Förster Resonance Energy Transfer: From Theory to Applications. Wiley-VCH, Weinheim

    Google Scholar 

  5. Zhang F (2015) Photon Upconversion Nanomaterials. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Qin A, Tang BZ (2013) Aggregation-Induced Emission: Fundamentals and Applications, Volume 1 and 2. Wiley, Chichester

    Google Scholar 

  7. Tartakovskii AG (2012) Quantum Dots: Optics, Electron Transport, and Future Applications. Cambridge University Press, Cambridge

    Google Scholar 

  8. Güçlü AD, Potasz P, Korkusinski M, Hawrylak P (2014) Graphene Quantum Dots. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Williams OA (2014) Nanodiamond. Royal Society of Chemistry, Cambridge

    Google Scholar 

  10. Louis C, Pluchery O (2012) Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College Press, London

    Google Scholar 

  11. Cheng P (2015) Lanthanide Metal-Organic Frameworks. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Jung G (2012) Fluorescent Proteins I From Understanding to Design, Volume 11. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Cai W, Shalaev V (2010) Optical Metamaterials: Fundamentals and Applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Long N, Wong WT (2014) The Chemistry of Molecular Imaging. Wiley, Chichester

    Google Scholar 

  15. Abdel-Kader MH (2014) Photodynamic Therapy: From Theory to Application. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Gauglitz G, Moore DS (2014) Handbook of Spectroscopy, 4 Volume Set, 2 edn. Wiley-VCH, Weinheim

    Google Scholar 

  17. Lim SY, Hong KH, Kim DI, Kwon H, Kim HJ (2014) Tunable Heptamethine-Azo Dye Conjugate as an NIR Fluorescent Probe for the Selective Detection of Mitochondria Glutathione over Cysteine and Homocysteine. J Am Chem Soc 136:7018–7025

    Google Scholar 

  18. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa Jr IR, Luo ZG, Schultz C, Lemke E, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins. Nat Chem 5:132–139

    Google Scholar 

  19. Narain R (2014) Chemistry of Bioconjugates: Synthesis, Characterization, and Biomedical Applications. John Wiley and Sons Ltd, Hoboken, New Jersey

    Google Scholar 

  20. Zhang T, Lan R, Chan CF, Law GL, Wong WK, Wong KL (2014) In vivo Selective Cancer-Tracking Gadolinium Eradicator as New-Generation Photodynamic Therapy Agent. Proc Natl Acad Sci U S A 111:E5492–E5497

    Google Scholar 

  21. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Google Scholar 

  22. Hälmninen P, Härmä H (2011) Lanthanide Luminescence Photophysical, Analytical and Biological Aspects. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic Structures, Optical Properties, and Biodetection. Chem Soc Rev 44:1379–1415

    Google Scholar 

  24. Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion Luminescent Materials: Advances and Applications. Chem Rev 115:395–465

    Google Scholar 

  25. Yang Y, Shao Q, Deng R, Teng X, Wang C, Cheng K, Cheng Z, Huang L, Liu Z, Liu X, Xing B (2012) In Vitro and In Vivo Uncaging and Bioluminescence Imaging through Photocaged Upconversion Nanoparticles. Angew Chem Int Ed 51:3125–3129

    Google Scholar 

  26. Helmchen F, Denk W (2005) Deep Tissue Two-Photon Microscopy. Nat Methods 2:932–940

    Google Scholar 

  27. Maldiney T, Scherman D, Richard C (2012) Persistent Luminescence Nanoparticles for Diagnostics and Imaging, Ch 1. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 2. January 1, 1–25

    Google Scholar 

  28. Hölsä J (2009) Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence. The Electrochem Soc Interface, Winter

    Google Scholar 

  29. Yen WM, Shionoya S, Yamamoto H (2007) Phosphor Handbook, 2 edn. CRC Press/Taylor and Francis: Boca Raton

    Google Scholar 

  30. Furetta C (2009) Handbook of Thermoluminescence, 2 edn. World Scientific Co Pte Ltd, Singapore

    Google Scholar 

  31. Jaffe HH, Miller AL (1966) The fates of electronic excitation energy. J. Chem. Educ. 43:469-473

    Google Scholar 

  32. Zhu G, Shi Y, Mikami M, Shimomura Y, Wang Y (2014) Electronic structure and photo/cathodoluminescence properties investigation of green emission phosphor NaBaScSi2O7:Eu2+ with high thermal stability. CrystEngComm 16:6089–6097

    Google Scholar 

  33. Zhang Y, Hao J (2013) Metal-ion doped luminescent thin films for optoelectronic applications. J. Mater. Chem C 1:5607–5618

    Google Scholar 

  34. Ronda C (2008) Luminescence: From Theory to Applications. Wiley-VCH, Weinheim

    Google Scholar 

  35. West AR (2014) Solid State Chemistry and Its Applications, 2 edn, student edn. Wiley, Chichester

    Google Scholar 

  36. Van den Eeckhout K, Smet PF, Poelman D (2010) Persistent Luminescence in Eu2+-Doped Compounds: A Review. Materials 4:2526–2566

    Google Scholar 

  37. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J Electrochem Soc 143:2670–2673

    Google Scholar 

  38. Aitasalo T, Deren P, Hölsä J, Jungner H, Krupa JC, Lastusaari M, Legendziewicz J, Niittykoski J, Strek W (2003) Persistent luminescence phenomena in materials doped with rare earth ions. J Solid State Chem 171:114–122

    Google Scholar 

  39. Dorenbos P (2005) Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds. J Electrochem Soc 152:H107–H110.

    Google Scholar 

  40. Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Le Mercier T (2005) Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+. Chem. Mat. 17:3904–3912

    Google Scholar 

  41. Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Le Mercier T (2007) On the phosphorescence mechanism in SrAl2O4:Eu2+ and its codoped derivatives. Solid State Sci 9:608–612

    Google Scholar 

  42. Chen B, Hao HC, Zhu J, Lu M (2011) A Phenomenological Model for Decay Process of Long Persistent Phosphorescence. Chin Phys Lett 28(5):053201

    Google Scholar 

  43. Belsky A, Ivanovskikh K, Vasil’ev A, Joubert MF, Dujardin C (2013) Estimation of the Electron Thermalization Length in Ionic Materials. J Phys Chem Lett 4:3534–3538

    Google Scholar 

  44. Caratto V, Locardi F, Costa GA, Masini R, Fasoli M, Panzeri L, Martini M, Bottinelli E, Gianotti E, Miletto I (2014) NIR Persistent Luminescence of Lanthanide Ion-Doped Rare Earth Oxycarbonates: The Effect of Dopants. ACS Appl Mater Interfaces 6:17346–17351

    Google Scholar 

  45. Van den Eeckhout K, Poelman D, Smet PF (2013) Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review. Materials 6:2789–2818

    Google Scholar 

  46. Li Y, Zhou S, Li Y, Sharafudeen K, Ma Z, Dong G, Peng M, Qiu J (2014) Long Persistent and Photo-Stimulated Luminescence in Cr3+-Doped Zn-Ga-Sn-O Phosphors for Deep and Reproducible Tissue Imaging. J Mater Chem C 2:2657–2663

    Google Scholar 

  47. Pan Z, Lu YY, Liu F (2012) Sunlight-Activated Long-Persistent Luminescence in the Near-Infrared from Cr3+-doped Zinc. Nat Mater 11(1):58–63

    Google Scholar 

  48. Maldiney T, Richard C, Seguin J, Wattier N, Bessodes M, Scherman D (2011) Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5(2):854–862

    Google Scholar 

  49. Katayama Y, Ueda J, Tanabe S (2014) Effect of Bi2O3 doping on persistent luminescence of MgGeO3: Mn2+ phosphor. Opt Mater Express 4:613–623

    Google Scholar 

  50. Lecointre A, Bessière A, Bos AJJ, Dorenbos P, Viana B, Jacquart S (2011) Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln=Nd, Ho, Dy). J Phy Chem C 115:4217–4227

    Google Scholar 

  51. Kimata M (1983) The structural properties of synthetic Sr-akermanite, Sr2MgSi2O7. Z. Kristallogr. 163:295–304

    Google Scholar 

  52. Singh SK (2014) Red and near infrared persistent luminescence nano-probes for bioimaging and targeting. RSC Adv 4:58674–58698.

    Google Scholar 

  53. Van den Eechkout K, Bos AJJ, Poelman D, Smet PF (2013) Revealing trap depth distributions in persistent phosphors. Phys Rev B 87:045126

    Google Scholar 

  54. Rodrigues LCV, Hölsä J, Lastusaari M, Felinto MCFC, Brito HF (2014) Defect to R3+ energy transfer colour tuning of persistent luminescence in CdSiO3. J Mater Chem C 2:1612–1618

    Google Scholar 

  55. Maldiney T, Lecointre A, Viana B, Bessière M, Courier D, Ricard C, Scherman D (2011) Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J Am Chem Soc 133:11810–11815

    Google Scholar 

  56. le Masne de Chermont Q, Chanéac C, Seguin J, Pellé F, Maîtrejean S, Jolivet J-P, Gourier D, Bessodes M, Scherman D (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci U S A 104:9266–9271

    Google Scholar 

  57. Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumors and grafted cells. Nat Mater 13:418–426

    Google Scholar 

  58. Li X, Li Y, Han Y, Pan W, Zhang T, Tang B (2014) A Highly Selective and Instantaneous Nanoprobe for Detection and Imaging of Ascorbic Acid in Living Cells and In Vivo. Anal Chem 86:3924–3930

    Google Scholar 

  59. Wu BY, Wang HF, Chen JT, Yan XP (2011) Fluorescence Resonance Energy Transfer Inhibition Assay for α-Fetoprotein Excreted during Cancer Cell Growth Using Functionalized Persistent Luminescence Nanoparticles. J Am Chem Soc 133:686–688

    Google Scholar 

  60. Paterson AS, Raja B, Garvey G, Kolhatkar A, Hagström AEV, Kourentzi K, Lee TR, Willson RC (2014) Persistent Luminescence Strontium Aluminate Nanoparticles as Reporters in Lateral Flow Assays. Anal Chem 86:9481–9488

    Google Scholar 

  61. Maldiney T, Ballet B, Bessodes M, Scherman D, Richard D (2014) Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery. Nanoscale 6:13970–13976

    Google Scholar 

  62. Chen W, Zhang J (2006) Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J Nanotec Nanosci 8:1159–1166

    Google Scholar 

  63. Chen DQ, Chen Y, Lu HW, Ji ZG (2014) A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem 53:8638–8645

    Google Scholar 

  64. Abdukayum A. Chen JT, Zhao Q, Yan XP (2013) Functional near infrared-emitting Cr3+/Pr3+ co-doped zince gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135:14125–14133

    Google Scholar 

  65. Li G, Wang Y, Zeng W, Chen W, Han S, Guo H (2015) Luminescent and magnetic properties of the afterglow phosphors GdSr2AlO5:RE3+ (RE3+ = Eu3+, Pr3+ and Dy3+). RSC Adv 5:20884–20889

    Google Scholar 

  66. Domínguez JF, Egan GF, Gray MA, Poudel GR, Churchyard A, Chua P, Stout JC, Georgiou-Karistianis N (2013) Multi-modal neuroimaging in premanifest and early Huntington’s deases: 18 month longitudinal data from the IMAGE-HD study. PLOS one 8(9):e74131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Leung Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chan, WL., Liu, Z., Wong, KL. (2016). Persistent Luminescence Nanomaterials for Biomedical Applications: A Quick Grasp of the Trend. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_11

Download citation

Publish with us

Policies and ethics