Skip to main content

Nano-enabled Multifunctional Materials for Aerospace Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

This chapter discusses the significance of nano-enabled multifunctional materials for aerospace applications. Several studies of these materials report research breakthroughs on the in situ formation of nanostructures and hierarchical structures, and their effects on the improvement of both functional and structural properties for space and aircraft applications such as the EMI shielding, thermal, electrical and opto-magnetic properties, fracture toughness and strength. The materials discussed here relate mostly to polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouritz AP, Feih S, Kandare SE, Kandare Z, Mathys Z, Gibson AG, Des Jardin PE, Case SW, Lattimer BY (2009) Review of fire structural modelling of polymer composites. Compos Part 40(12):1800–1814

    Google Scholar 

  2. Kurahatti Singh RV, Surendranathan AO, Kori Nirbhay SA (2010) Defence applications of polymer nanocomposites. Defence Sci J 60(5):551–563

    Article  Google Scholar 

  3. Koussios A, Buckers H, Berkee S (2011) Composite materials, a vision for the future. Book Chapter I pp 1–50. doi:10.1007/978-0-85729-166-0_1

  4. Halpin JC, Luigi N, Michele M, Eva M (2011) Composite materials, a vision for the future. Book Chapter II 51–68 doi:10.1007/978-0-85729-166-0

  5. Wee WH, Zong RG, Maguire SS, Sangari PH, Lucas, Durand P (2008) Major trends in polymeric composites technology composite materials research progress. Nova Science Publishers Inc., New York, USA, pp 107–127

    Google Scholar 

  6. Tao X (2011) Recent advances in shape memory alloy. Polymers 52(22):4985–5000

    Article  Google Scholar 

  7. Zhang Y, Wenyi L (2011) Structure analysis and choosing materials for the aerospace multi-functional structure of electronic equipment. In: Proceedings of international conference on computer engineering and applications (IPCSIT), vol 2:240–243

    Google Scholar 

  8. Defense Committee on Materials Research for Structural and Multifunctional Materials (2003) Materials research to meet 21st century defense needs. In: Proceedings of committee on materials research for defense, Washington DC, USA, pp 27–53

    Google Scholar 

  9. Meyyappan M (2005) Nanotechnology in aerospace applications. RTO-EN-AVT-129, Paper 7. Neuilly-sur-Seine, France, pp 7.1–7.37

    Google Scholar 

  10. Suresh Kumar KVVS, Reddy M, Kumar A, Rohini Devi G (2013) Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp Sci Technol 26(1):185–191

    Article  Google Scholar 

  11. Koizumi M (1997) FGM activities in Japan. Compos Part B 28:1–4

    Article  Google Scholar 

  12. Cooley WG (2005) Application of functionally graded materials in aircraft structures. M.Sc. thesis, Department of Aeronautics and Astronautics, M.SC thesis, Air Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA

    Google Scholar 

  13. Gibson R (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810

    Google Scholar 

  14. Dr Morgan AB (2011) Design and application of multi-functional materials. Mater Matters 2(1):1–6

    Google Scholar 

  15. Atkinson HV (2001) Structural and functional materials. Mater Sci Eng II:1–13

    Google Scholar 

  16. Schottner G (2001) Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem Mater 13(10):3422–3435

    Article  Google Scholar 

  17. Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. Mater Res Soc 32(4):328–334

    Article  Google Scholar 

  18. Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249

    Article  Google Scholar 

  19. Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28

    Article  Google Scholar 

  20. Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409

    Article  Google Scholar 

  21. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    Article  Google Scholar 

  22. Montalvao D, Maia NMM, Ribeiro AMR (2006) A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib Digest 38(4):295–324

    Article  Google Scholar 

  23. Zou Y, Tong L, Steven GP (2000) Vibration-based model dependent damage identification and health monitoring for composite structures—a review. J Sound Vib 230(2):357–378

    Article  Google Scholar 

  24. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522

    Article  Google Scholar 

  25. Sodano HA, Inman DJ, Park G (2004) Review of power harvesting from vibration using piezoelectric materials. Shock Vib Digest 36(3):197–205

    Article  Google Scholar 

  26. Park G, Rosing T, Todd MD, Farrar CR, Hodgkiss W (2008) Energy harvesting for structural health monitoring sensor networks. J Infrastruct Syst 14(1):64–79

    Article  Google Scholar 

  27. RyszardPilawka SP, Rosłaniec Z (2012) Epoxy composites with carbon nanotubes. Adv Manuf Sci Tech 36(3):67–79

    Google Scholar 

  28. Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxycomposites. Polymer 45(24):8211–8219

    Article  Google Scholar 

  29. Nigrawal A, Chand N (2010) Electrical and thermal investigations on exfoliated graphite filled epoxy gradient composites. Malays Polym J 5(2):130–139

    Google Scholar 

  30. Huda Z, Edi P (2013) Selection in design of structures and engines of supersonic aircrafts: a review. Mater Des 46(2013):552–560

    Google Scholar 

  31. Balasubramanian K, Tirumalai M (2013) High Temperature Polymer Nanocomposites. In: Structural Nanocomposites: Perspectives for Future Applications (Engineering Materials), James N (ed), Springer, Berlin, pp. 165–186

    Google Scholar 

  32. Marquis DM, Guillaume É, Chivas-Joly C (2011) Properties of nanofillers in polymer. www.intechopen.com, Chapter 11, pp 261–284

  33. Jonghwan S, Wei Z, Ajayan PM, Koratkar NA (2006) Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Lett 6(2):219–223

    Article  Google Scholar 

  34. Kashiwagi T, Fangming DU, Douglas JF, Winey KL, Harris RH Jr, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933

    Article  Google Scholar 

  35. Coleman JN, Khan H, Gun’Ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706

    Article  Google Scholar 

  36. Dalton AB, Collins S, Muñoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703–704

    Article  Google Scholar 

  37. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219

    Article  Google Scholar 

  38. Velasco-Santos C, Martínez-Herná AL, Ndez FT, Castañ VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15(23):4470–4475

    Article  Google Scholar 

  39. Kis AC, Salvetat G, Lee JP, Couteau T, Kulik E, Benoit A, Brugger W, Forro JL (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mater 3(2004):53–157

    Google Scholar 

  40. Patton RD Jr, Wang C, Hill L, Day JR (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber / phenolic matrix composites. Compos Part A-Appl S 33(2):243–251

    Article  Google Scholar 

  41. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718

    Article  Google Scholar 

  42. Kimberly AT, Saliba TE (1995) Mechanism of the pyrolysis of phenolic resin in carbon/phenolic composite. Carbon 33(11):1509–1515

    Article  Google Scholar 

  43. Srikanth I, Padmavathi N, Suresh Kumar P, Anil Kumar G, Subrahmanyam Ch (2013) Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos Sci Tech 80:1–7

    Google Scholar 

  44. Mouritz AP, Gibson AG (2006) Fire properties of polymer composite materials. 1st ed. solid mechanics and its applications. (pbk), 14:163–213

    Google Scholar 

  45. Balasubramanian K, Yutika B (2014) Indian patent, cost effective processing of defect/ blister free ablative composites of functionally tailored resins of ultra high temperature ceramics for layered composite. Patent number: 641/MUM/2014

    Google Scholar 

  46. Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44(24):7353–7359

    Article  Google Scholar 

  47. Kawamoto AM, Pardini LC, Diniz MF, Lourenco VL, Takahashi MFK (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manage 2(2):169–182

    Article  Google Scholar 

  48. Yu H, Liu J, Wen X, Jiang Z, Wang Y, Wang L, Zheng J (2011) Charring polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin. Polymer 52(21):4891–4898

    Article  Google Scholar 

  49. Zhang Y, Shen S, Liu Y (2013) The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure. Polym Degrad Stab 98(2):514–518

    Article  Google Scholar 

  50. Cho Donghwan (1996) Phenolic composites fabricated using h3po4-coated carbon fibres. J Mater Sci Lett 15(20):1786–1788

    Article  Google Scholar 

  51. Dhami TL, Bahl OP, Awasthy BR (1995) Oxidation-resistant carbon-carbon composites up to 1700 °C. Carbon 33(4):479–490

    Article  Google Scholar 

  52. Tirumalai M, Balasubramanian K, Kumaraswamy A (2013) Epoxy composites of graphene oxide (GO): a review. In: Proceedings of IEEE-International Conference on Research and Development Prospectus on Engineering and Technology (ICRDPET), EGS Pillay Engineering College, 29–30 March, 2013 Nagapattinam, India, pp. 94–98

    Google Scholar 

  53. Sanoj P, Balasubramanian K (2014) Hybrid carbon-carbon ablative composites for thermal protection in aerospace. J Compos 2014:1–15

    Article  Google Scholar 

  54. Kovalcikova A, Dusza J, Sajgalik P (2009) Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics. J Eur Ceramic Soc 29(11):2387–2394

    Article  Google Scholar 

  55. Yamada K, Kamiya N (1999) High temperature mechanical properties of Si3N4–MoSi2 and Si3N4–SiC composites with network structures of second phases. Mater Sci Eng A 261(1999):270–277

    Google Scholar 

  56. Zhang XH, Wang Z, Hu P, Han W, Hong CQ (2009) Mechanical properties and thermal shock resistance of ZrB2–SiC ceramic toughened with graphite flake and SiC whiskers. Scripta Materialia 61(8):809–812

    Article  Google Scholar 

  57. Buchheit AA, Hilmas GE, Fahrenholtz WG, Deason DM (2009) Thermal shock resistance of an AlN–BN–SiC ceramic. J Am Ceramic Soc 92(6):1358–1361

    Article  Google Scholar 

  58. Badhe Y, Balasubramanian K (2014) Novel Novel hybrid ablative composites of resorcinol formaldehyde as thermal protection systems forre-entry vehicles. RSC Adv 4:28956–28963

    Article  Google Scholar 

  59. Wang J, Jiang N, Jiang H (2010) Micro-structural evolution of phenol-formaldehyde resin modified by boron carbide at elevated temperatures. Mater Chem Phys 120(1):187–192

    Article  Google Scholar 

  60. Konstantinov AO (1995) Sublimation growth of SiC. In: Properties of Silicon Carbide. Harris GL (ed), INSPEC, the Institution of Electrical Engineers, London, UK, pp. 170–203

    Google Scholar 

  61. Livingston F, Sarney W, Niesz K, Ould-Ely T, Tao A, Morse D (2009) Bio-inspired synthesis and laser processing of nanostructured barium titanate thin-films: implications for uncooled IR sensor development SPIE Proc 7321:1–13

    Google Scholar 

  62. Huang J, Virji S, Weiller B, Kaner R (2003) Polyanilinenanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315

    Article  Google Scholar 

  63. Virji S, Huang J, Kaner R, Weiller B (2005) Polyanilinenanofiber composites with metal salts: chemical sensors for hydrogen sulphide. Small 1(6):624–627

    Article  Google Scholar 

  64. Virji S, Huang J, Kaner R, Weiller B (2004) Polyanilinenanofiber gas sensors: examination of response mechanisms. Nano Lett 4(3):491–496

    Article  Google Scholar 

  65. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett 4:491–496

    Google Scholar 

  66. Virji S, Kaner R, Weiller B (2007) Hydrogen sensors based on conductivity changes in polyanilinenanofibers. J Phys Chem B 110(44):22266–22270

    Article  Google Scholar 

  67. Kulinich A, Farzaneh M (2009) How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25(16):8854–8856

    Article  Google Scholar 

  68. Zhang G, Wang D, Gu Z, Mchwald H (2005) Facile fabrication of super-hydrophobic surfaces from binary colloidal assembly. Langmuir 21(20):9143–9148

    Article  Google Scholar 

  69. Liu B, He Y, Fan Y, Wang X (2006) Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromol Rapid Commun 27(21):1859–1864

    Article  Google Scholar 

  70. Jiang L, Zhao Y, Zhai J (2004) Alotus-leaf-like super hydrophobic surface: a porous microsphere/nanofiber composite film prepared by electro hydrodynamics. Angew Chem Int Ed 43(33):4338–4341

    Google Scholar 

  71. Sahoo BN, Balasubramanian K, Sabarish B (2014) Controlled fabrication of non-fluoropolymer composite film on glass surfaces with hierarchically nano structured fibers. Prog Org Coat 77(4):904–907

    Article  Google Scholar 

  72. Sahoo BN, Balasubramanian K (2014) Facile synthesis of nano cauliflower and nano broccoli like hierarchical super hydrophobic composite coating using pvdf/carbon soot particles via gelation technique. J Colloid Interface Sci 436:111–121

    Google Scholar 

  73. Sahoo BN, Balasubramanian K (2014) An experimental design for the investigation of water repellent property of candle soot particles. Mater Chem Phys 148(1–2):134–142

    Article  Google Scholar 

  74. Sahoo BN, Balasubramanain K (2014) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic application. RSC Adv 4(22):11331–11342

    Article  Google Scholar 

  75. Banerjee S, Tyagi AK (eds) (2012) Functional materials: preparation, processing and applications. Elsevier, New York, USA

    Google Scholar 

  76. Guozhong G (2003) Nanostructures and Nanomaterials. Imperial College Press, London, UK, pp 51–269

    Google Scholar 

Download references

Acknowledgments

The authors thank the Vice Chancellor, DIAT (DU) and Director, MILIT, Pune, Dr. N. Eswara Prasad, Dr. R.J.H Wanhill and the “DIAT: NANO project EPIPR/ER/1003883/M/01/908/2012/D (R&D)/1416” for encouragement and support. They also thank the Defence Institute of Advanced Technology, Pune, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Balasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Balasubramanian, K., Tirumali, M., Badhe, Y., Mahajan, Y.R. (2017). Nano-enabled Multifunctional Materials for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics