Skip to main content

Insights into the Functional Finishing of Textile Materials Using Nanotechnology

  • Chapter
  • First Online:
Textiles and Clothing Sustainability

Abstract

Over the past few decades, there is an emergence of new multidisciplinary approaches to functionalize different textile materials. Nanotechnology is increasingly attracting scientific attention to develop multifunctional textiles for various end uses among all technologies. Nanoparticles play vital role in coloration and, in view of their large surface area-to-volume ratio and high surface energy, have imparted novel properties such as microbial resistance, flame retardancy, and self-cleaning property to different textile surfaces. This book chapter emphasizes on recent functional treatments of both natural and synthetic textile materials using nanotechnology. Applications of the sustainable nanotextiles in many of the sectors such as medicine and protective clothing are also critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeel, S., Ali, S., Bhatti, I. A., & Zsila, F. (2009). Dyeing of cotton fabric using pomegranate (Punica granatum) aqueous extract. Asian Journal of Chemistry, 21(5), 3493.

    CAS  Google Scholar 

  • Ali, H. (2010). Biodegradation of synthetic dyes—A review. Water, Air, and Soil pollution, 213(1–4), 251–273.

    Article  CAS  Google Scholar 

  • Anghel, I., Grumezescu, A. M., Andronescu, E., Anghel, A. G., Ficai, A., Saviuc, C., et al. (2012). Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale research letters, 7(1), 2–7.

    Google Scholar 

  • Aniołczyk, H., Koprowska, J., Mamrot, P., & Lichawska, J. (2004). Application of electrically conductive textiles as electromagnetic shields in physiotherapy. Fibres and Textiles in Eastern Europe, 12(4), 47–50.

    Google Scholar 

  • Batool, F., Adeel, S., Azeem, M., Khan, A. A., Bhatti, I. A., Ghaffar, A., et al. (2013). Gamma radiations induced improvement in dyeing properties and colorfastness of cotton fabrics dyed with chicken gizzard leaves extracts. Radiation Physics and Chemistry, 89, 33–37.

    Article  CAS  Google Scholar 

  • Bhatti, I. A., Adeel, S., Jamal, M. A., Safdar, M., & Abbas, M. (2010). Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L.) as natural dye. Radiation Physics and Chemistry, 79(5), 622–625.

    Article  CAS  Google Scholar 

  • Blackburn, R. S., Harvey, A., Kettle, L. L., Manian, A. P., Payne, J. D., & Russell, S. J. (2007). Sorption of chlorhexidine on cellulose: Mechanism of binding and molecular recognition. Journal of Physical Chemistry B, 111(30), 8775–8784.

    Article  CAS  Google Scholar 

  • Bourbigot, S., Devaux, E., & Flambard, X. (2002). Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polymer Degradation and Stability, 75(2), 397–402.

    Article  CAS  Google Scholar 

  • Bozzi, A., Yuranova, T., & Kiwi, J. (2005). Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry, 172, 27–34.

    Article  CAS  Google Scholar 

  • Carosio, F., Laufer, G., Alongi, J., Camino, G. & Grunlan, J. C. (2011). Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polymer Degradation and Stability, 96(5), 745–750.

    Google Scholar 

  • Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79(1), 5–18.

    Article  CAS  Google Scholar 

  • Dastjerdi, R., Montazer, M., & Shahsavan, S. (2009). A new method to stabilize nanoparticles on textile surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345(1), 202–210.

    Article  CAS  Google Scholar 

  • Dev, V. G., Venugopal, J., Sudha, S., Deepika, G., & Ramakrishna, S. (2009). Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydrate Polymers, 75(4), 646–650.

    Article  CAS  Google Scholar 

  • Dubas, S. T., Kumlangdudsana, P., & Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1), 105–109.

    Article  CAS  Google Scholar 

  • Gao, Y. & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1), 60–72.

    Google Scholar 

  • Guo, C., Zhou, L., & Lv, J. (2013). Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polymers and Polymer Composites, 21(7), 449–456.

    CAS  Google Scholar 

  • Hakansson, E., Kaynak, A., Lin, T., Nahavandi, S., Jones, T., & Hu, E. (2004). Characterization of conducting polymer coated synthetic fabrics for heat generation. Synthetic Metals, 144(1), 21–28.

    Article  CAS  Google Scholar 

  • Hutchison, J. E. (2008). Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2(3), 395–402.

    Article  CAS  Google Scholar 

  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Article  CAS  Google Scholar 

  • Islam, S., Butola, B. S., & Mohammad, F. (2016). Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Advances, 6, 44232–44247.

    Article  Google Scholar 

  • Islam, S., & Mohammad, F. (2014). Emerging green technologies and environment friendly products for sustainable textiles. In: S. S. Muthu (ed.), Roadmap to sustainable textiles and clothing (pp. 6–82): Singapore: Springer.

    Google Scholar 

  • Islam, S., Shahid, M., & Mohammad, F. (2013a). Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—A review. Industrial and Engineering Chemistry Research, 52, 5245–5260.

    Article  Google Scholar 

  • Islam, S., Shahid, M., & Mohammad, F. (2013b). Perspectives for natural product based agents derived from industrial plants in textile applications—A review. Journal of Cleaner Production, 57, 2–18.

    Article  Google Scholar 

  • Islam, S., Shahid, M., & Mohammad, F. (2014). Future prospects of phytosynthesized transition metal nanoparticles as novel functional agents for textiles. In: A. T. Syväjärvi (ed.), Advanced materials for agriculture, food, and environmental safety (pp. 265–290). New York: Wiley.

    Google Scholar 

  • Johnston, J. H., Richardson, M. J., & Burridge, K. A. (2008). Gold nanoparticles as colourants in high fashion fabrics and textiles (Vol. 1, pp. 712–715).

    Google Scholar 

  • Joshi, M., Wazed Ali, S., Purwar, R., & Rajendran, S. (2009). Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian Journal of Fibre & Textile Research, 34(3), 295–304.

    CAS  Google Scholar 

  • Kale, K. H., Palaskar, S. S., & Kasliwal, P. M. (2012). A novel approach for functionalization of polyester and cotton textiles with continuous online deposition of plasma polymers, 37(September), 238–244.

    Google Scholar 

  • Kaplan, S., & Okur, A. (2008). The meaning and importance of clothing comfort: A case study for Turkey. Journal of Sensory Studies, 23(5), 688–706.

    Article  Google Scholar 

  • Kathirvelu, S., D’souza, L., & Dhurai, B. (2009). UV protection finishing of textiles using ZnO nanoparticles. Indian Journal of Fibre Textile Research, 34(3), 267–273

    Google Scholar 

  • Kawabata, A., & Taylor, J. A. (2007). The effect of reactive dyes upon the uptake and antibacterial efficacy of poly(hexamethylene biguanide) on cotton. Part 3: Reduction in the antibacterial efficacy of poly(hexamethylene biguanide) on cotton, dyed with bis(monochlorotriazinyl) reactive dyes. Carbohydrate Polymers, 67(3), 375–389.

    Article  CAS  Google Scholar 

  • Khan, M. I., Ahmad, A., Khan, S. A., Yusuf, M., Shahid, M., Manzoor, N., et al. (2011). Assessment of antimicrobial activity of catechu and its dyed substrate. Journal of Cleaner Production, 19(12), 1385–1394.

    Article  CAS  Google Scholar 

  • Khan, S. A., Ahmad, A., Khan, M. I., Yusuf, M., Shahid, M., Manzoor, N., et al. (2012). Antimicrobial activity of wool yarn dyed with Rheum emodi L. (Indian Rhubarb). Dyes and Pigments, 95(2), 206–214.

    Article  CAS  Google Scholar 

  • Krebs, F. C., Miller, S. R., Ferguson, M. L., Labib, M., Rando, R. F., & Wigdahl, B. (2005). Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomedicine & Pharmacotherapy, 59(8), 438–445.

    Article  CAS  Google Scholar 

  • Li, D., & Sun, G. (2007). Coloration of textiles with self-dispersible carbon black nanoparticles. Dyes and Pigments, 72(2), 144–149.

    Article  CAS  Google Scholar 

  • Lombi, E., Donner, E., Scheckel, K. G., Sekine, R., Lorenz, C., Goetz, N. V. et al. (2014). Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere, 111, 352–358.

    Google Scholar 

  • Meilert, K. T., Laub, D., & Kiwi, J. (2005). Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A: Chemical, 237, 101–108.

    Article  CAS  Google Scholar 

  • Mirjalili, M., Nazarpoor, K., & Karimi, L. (2011). Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. Journal of Cleaner Production, 19(9), 1045–1051.

    Article  CAS  Google Scholar 

  • Montazer, M., Amiri, M. M. & Malek, R. M. A. (2013). In situ synthesis and characterization of nano ZnO on wool: influence of nano photo reactor on wool properties. Photochemistry and photobiology, 89(5), 1057–1063.

    Google Scholar 

  • Montazer, M., & Maali Amiri, M. (2014). ZnO nano reactor on textiles and polymers: Ex situ and in situ synthesis, application, and characterization. The Journal of Physical Chemistry B, 118(6), 1453–1470.

    Article  CAS  Google Scholar 

  • Montazer, M., & Pakdel, E. (2011). Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 293–303.

    Article  CAS  Google Scholar 

  • Montazer, M., Pakdel, E., & Behzadnia, A. (2011). Novel feature of nano-titanium dioxide on textiles: Antifelting and antibacterial wool. Journal of Applied Polymer Science, 121(6), 3407–3413.

    Article  CAS  Google Scholar 

  • Moore, K., & Gray, D. (2007). Using PHMB antimicrobial to prevent wound infection. Wounds uK, 3(2), 96–102.

    Google Scholar 

  • Mulder, G. D., Cavorsi, J. P., & Lee, D. K. (2007). Polyhexamethylene niguanide (PHMB): An addendum to current topical antimicrobials. Wounds : A Compendium of Clinical Research and Practice, 19(7), 173—182. http://europepmc.org/abstract/MED/26110333

  • Neisius, M., Stelzig, T., Liang, S., & Gaan, S. (2015). Flame retardant finishes for textiles. Functional Finishes for Textiles: Woodhead Publishing Limited. doi:10.1533/9780857098450.2.429

    Book  Google Scholar 

  • Orhan, M., Kut, D., & Gunesoglu, C. (2007). Use of triclosan as antibacterial agent in textiles. Indian Journal of Fibre & Textile Research, 32, 114–118.

    CAS  Google Scholar 

  • Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz-Sigl, E., Hasmann, A., Guebitz, G. M., et al. (2009). Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Applied Materials and Interfaces, 1(2), 361–366

    Google Scholar 

  • Perera, S., Bhushan, B., Bandara, R., & Rajapakse, G. (2013). Colloids and surfaces A: Physicochemical and engineering aspects morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 975–989.

    Article  CAS  Google Scholar 

  • Petkova, P., Francesko, A., Fernandes, M. M., Mendoza, E., Perelshtein, I., Gedanken, A., et al. (2014). Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles.

    Google Scholar 

  • Radetić, M. (2013). Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 16, 62–76.

    Article  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.

    Article  CAS  Google Scholar 

  • Rather, L. J., Islam, S., & Mohammad, F. (2015). Study on the application of Acacia nilotica natural dye to wool using fluorescence and FT-IR spectroscopy. Fibers and Polymers, 16(7), 1497–1505.

    Google Scholar 

  • Saravanan, D. (2007). UV protection textile materials. Autex Research Journal, 7(1), 53–62.

    Google Scholar 

  • Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods, 54(2), 177–182.

    Article  CAS  Google Scholar 

  • Schilling, K., Bradford, B., Castelli, D., Dufour, E., Nash, J. F., Pape, W., et al. (2010). Human safety review of “nano” titanium dioxide and zinc oxide. Photochemical & Photobiological Sciences, 9(4), 495–509.

    Article  CAS  Google Scholar 

  • Shabbir, M., Islam, S. U., Bukhari, M. N., Rather, L. J., Khan, M. A., & Mohammad, F. (2016). Application of Terminalia chebula natural dye on wool fiber—Evaluation of color and fastness properties. Textiles and Clothing Sustainability, 2(1), 1.

    Article  Google Scholar 

  • Shahid, M., Ahmad, A., Yusuf, M., Khan, M. I., Khan, S. A., Manzoor, N., et al. (2012). Dyeing, fastness and antimicrobial properties of woolen yarns dyed with gallnut (Quercus infectoria Oliv.) extract. Dyes and Pigments, 95(1), 53–61.

    Article  CAS  Google Scholar 

  • Shahid, M., Islam, S., & Mohammad, F. (2013). Recent advancements in natural dye applications: a review. Journal of Cleaner Production, 53, 310–331.

    Google Scholar 

  • Shahmoradi Ghaheh, F., Mortazavi, S. M., Alihosseini, F., Fassihi, A., Shams Nateri, A., & Abedi, D. (2014). Assessment of antibacterial activity of wool fabrics dyed with natural dyes. Journal of Cleaner Production, 72, 139–145.

    Article  CAS  Google Scholar 

  • Simoncic, B., & Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles—A review. Textile Research Journal, 80(16), 1721–1737.

    Article  CAS  Google Scholar 

  • Sinha, K., Saha, P. D., & Datta, S. (2012). Extraction of natural dye from petals of flame of forest (Butea monosperma) flower: Process optimization using response surface methodology (RSM). Dyes and Pigments, 94(2), 212–216.

    Article  CAS  Google Scholar 

  • Sun, G., Chen, T. Y., Sun, W., Wheatley, W. B. & Worley, S. D. (1995). Preparation of novel biocidal N-halamine polymers. Journal of bioactive and compatible polymers, 10(2), 135–144.

    Google Scholar 

  • Textile-Based Drug Release Systems. (n.d.). doi:10.1533/9781845692933.1.50

  • Tutak, M., & Korkmaz, N. E. (2012). Environmentally friendly natural dyeing of organic cotton. Journal of Natural Fibers, 9(1), 51–59.

    Article  CAS  Google Scholar 

  • Vankar, P. S., Shanker, R., Mahanta, D., & Tiwari, S. C. (2008). Ecofriendly sonicator dyeing of cotton with Rubia cordifolia Linn. using biomordant. Dyes and Pigments, 76(1), 207–212.

    Article  Google Scholar 

  • Vankar, P. S., Shanker, R., & Verma, A. (2007). Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. Journal of Cleaner Production, 15(15), 1441–1450.

    Article  Google Scholar 

  • Vigneshwaran, N., Varadarajan, P. V, & Balasubramanya, R. H. (2009). Application of metallic nanoparticles in textiles. Nanotechnologies for the Life Sciences, 541–558.

    Google Scholar 

  • Windler, L., Lorenz, C., Von Goetz, N., Hungerbuhler, K., Amberg, M., Heuberger, M., et al. (2012). Release of titanium dioxide from textiles during washing. Environmental Science and Technology, 46(15), 8181–8188.

    Article  CAS  Google Scholar 

  • Worley, S. D., Williams, D. E., & Crawford, R. A. (1988). Halamine water disinfectants. Critical Reviews in Environmental Control, 18(2), 133–175.

    Article  CAS  Google Scholar 

  • Yazdankhah, S. P., Scheie, A., Høiby, E. A., Lunestad, B.-T., Heir, E., Fotland, T. Ø., et al. (2006). Triclosan and antimicrobial resistance in bacteria: An overview. Microbial Drug Resistance (Larchmont, N.Y.), 12(2), 83–90.

    Google Scholar 

  • Yuranova, T., Rincon, A. G., Pulgarin, C., Laub, D., Xantopoulos, N., Mathieu, H. J., et al. (2006). Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. Journal of Photochemistry and Photobiology A: Chemistry, 181(2–3), 363–369.

    Article  CAS  Google Scholar 

  • Yusuf, M., Ahmad, A., Shahid, M., Khan, M. I., Khan, S. A., Manzoor, N., et al. (2012). Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). Journal of Cleaner Production, 27, 42–50.

    Article  CAS  Google Scholar 

  • Zhang, B., Wang, L., Luo, L., & King, M. W. (2014). Natural dye extracted from Chinese gall—The application of color and antibacterial activity to wool fabric. Journal of Cleaner Production, 80, 204–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid-ul-Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shahid-ul-Islam, Shabbir, M., Mohammad, F. (2017). Insights into the Functional Finishing of Textile Materials Using Nanotechnology. In: Muthu, S. (eds) Textiles and Clothing Sustainability. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2188-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2188-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2187-9

  • Online ISBN: 978-981-10-2188-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics