Skip to main content

Regulation of Extracellular Matrix Remodeling and Epithelial-Mesenchymal Transition by Matrix Metalloproteinases: Decisive Candidates in Tumor Progression

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

Tumor biology is intricate and multifaceted. The genetic and epigenetic alterations accelerate normal cells to transform into aggressive malignant phenotype. Molecular principles of invasion and metastasis are indeed indispensable for profound understanding of tumorigenesis. The seeding pioneer cells from growing tumor eventually discharge from the original clump of mutant cells, invading adjacent tissues and mobilizing to distant sites. This attribute of cancer cells reduces patient’s survival rate and prognosis. Inquisition of mechanistic approach for metastasis is bestowed by two processes—extracellular matrix (ECM) remodeling and epithelial-mesenchymal transition (EMT). Proteases pave the way for invaders by breaking down the ECM and releasing pro-invasive factors from cell surface and ECM. Indeed, highly conserved EMT program leads to dissemination of single tumor cells from primary tumors. The zinc-dependent matrix MMPs are the most important effectors in these processes and frequently overexpressed in most of the tumors. Besides proteolysis, by activating or deactivating several growth factors, MMPs affect tumor neoangiogenesis and proliferation. The tissue inhibitors of metalloproteinases (TIMPs) play a central role in complex regulation of MMPs. An apt equilibrium between TIMPs and MMPs is significant in cell invasion and metastasis. These concepts are encouraged for pursuing MMPs as a signature for predicting metastasis and also as therapeutic target. A comprehensive understanding regarding enzyme-substrate interactions and regulation and specific MMPs’ functionality in cancer addresses that MMP inhibitors (MMPIs) should be specific in terms of MMP or degrading definite substrates. The scientific and clinical drive for second-generation MMPIs through the development of pharmaceutical reagents and clinical trials determining the therapeutic benefit to cancer patients should be geared up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis. Int J Oncol 34:881–895

    CAS  PubMed  Google Scholar 

  2. Hahn WC, Weinberg RA (2002) Rules for making human tumor cell. N Engl J Med 347:1593–1603

    Article  CAS  PubMed  Google Scholar 

  3. Veiseh O, Kievit FM, Ellenbogen RG, Zhang M (2011) Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 63(8):582–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102

    Article  CAS  PubMed  Google Scholar 

  6. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  CAS  PubMed  Google Scholar 

  7. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  CAS  PubMed  Google Scholar 

  8. Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60:222–243

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise, cell 140 (2010) 460–476. Cell 140:460–476

    Article  CAS  PubMed  Google Scholar 

  10. Alitalo K, Tammela T, TVP P (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  CAS  PubMed  Google Scholar 

  11. Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG (2000) Cancer invasion and Metastasis: molecular and cellular perspective. Madame Curie Biosci Database:1–34

    Google Scholar 

  12. Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13(12):535–541

    Article  CAS  PubMed  Google Scholar 

  13. Van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res Rev Mutat Res 728(1–2):23–34

    Article  CAS  Google Scholar 

  14. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christofori G (2006) New signals from the invasive front. Nature 441:444–450

    Article  CAS  PubMed  Google Scholar 

  16. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  17. Jechlinger M, Grunert S, Tamir IH, Janda E, Ludemann S, Waerner T, Seither P, Weith A, Beug H, Kraut N (2003) Expression profiling of epithelial plasticity in tumor progression. Oncogene 22:7155–7169

    Article  CAS  PubMed  Google Scholar 

  18. Massague J (2008) TGFbeta in cancer. Cell 134:215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    Article  CAS  PubMed  Google Scholar 

  20. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta Rev Cancer 1796(2):293–308

    Article  CAS  Google Scholar 

  22. Debois JM (2002) TXNXM1: the anatomy and clinics of metastatic cancer. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  23. Schouten LJ, Rutten J, Huveneers HA TA (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 95:2698–2705

    Google Scholar 

  24. GR M (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Google Scholar 

  25. Martin TA, Ye L, Sanders A et al (2000) Cancer invasion and metastasis: molecular and cellular perspective. 1–7

    Google Scholar 

  26. Birchmeier W BJ (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198:11–26

    Google Scholar 

  27. Trusolino L, Bertotti ACP (2001) A signalling adapter function for alpha6β4 integrin in the control of HGF-dependent invasive growth. Cell 107:643–654

    Article  CAS  PubMed  Google Scholar 

  28. Mareel M LA (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83:337–376

    Google Scholar 

  29. Arakaki PA, Marques MR, MCS (2009) MMP-1 polymorphism and its relationship to pathological processes. J Biosci 34(2):313–320

    Google Scholar 

  30. Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  31. Friedlander DR et al (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125(3):669–680

    Article  CAS  PubMed  Google Scholar 

  32. Trowbridge JM, RLG (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9):117R–125R

    Google Scholar 

  33. Bassols A, JM (1988) Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J Biol Chem 263(6):3039–3045

    Google Scholar 

  34. Hacker U, Nybakken K, NP (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6(7):530–541

    Google Scholar 

  35. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    Google Scholar 

  36. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):1–24

    Article  Google Scholar 

  37. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gupta GP, Massagu J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  39. Kalluri R, Weinberg RA (2009) Review series the basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Weinberg R (2008) Epithelial mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  CAS  PubMed  Google Scholar 

  42. Jechlinger M, Grunert S, Beug H (2002) Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. J Mammary Gland Biol Neoplasia 7:415–432

    Article  PubMed  Google Scholar 

  43. Zeisberg M et al (2003) BMP-7 counteracts TGFbeta1- induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  CAS  PubMed  Google Scholar 

  44. Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    Article  CAS  PubMed  Google Scholar 

  45. Eger A, Stockinger A, Schaffhauser B, Beug HA, Foisner R (2000) Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 148:173–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhowmick NA et al (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12(12):27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhowmick NA, Zent R, Ghiassi MM, M, Moses HL (2001) Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276:46707–46713

    Google Scholar 

  48. Watanabe T et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neil JR, Johnson KM, Nemenoff RA, Schiemann WP (2008) Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. Carcinogenesis 29:2227–2235

    Google Scholar 

  50. Tepass U, Truong K, Godt D, Ikura MA, Peifer M (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100

    Article  CAS  PubMed  Google Scholar 

  51. Muta H et al (1996) E-cadherin gene mutations in signet ring cell carcinoma of the stomach. Jpn J Cancer Res 87:843–848

    Article  CAS  PubMed  Google Scholar 

  52. Medici D, Hay ED, Olsen BR (2008) Snail and slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factorbeta3. Mol Biol Cell 19:4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blanco MJ et al (2002) Correlation of snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21:3241–3246

    Article  CAS  PubMed  Google Scholar 

  54. Yokoyama K et al (2001) Reverse correlation of Ecadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 37:65–71

    Article  CAS  PubMed  Google Scholar 

  55. Radisky DC et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  58. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zavadil J, Narasimhan M, Blumenberg MA, Schneider RJ (2007) Transforming growth factorbeta and microRNA: mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 185:157–161

    Article  CAS  PubMed  Google Scholar 

  60. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  PubMed  Google Scholar 

  61. Weinberg RA (2006) The biology of cancer. Garland Science, New York

    Google Scholar 

  62. Van Lint PLC (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82:1375–1381

    Article  PubMed  CAS  Google Scholar 

  63. Brew KNH (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson LL, Dyer RHD (1998) Matrix metalloproteinases. Curr Opin Chem Biol 2:466–471

    Article  CAS  PubMed  Google Scholar 

  65. Massova I, Kotra LP, Fridman RMS (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095

    CAS  PubMed  Google Scholar 

  66. Sternlicht MDWZ (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R et al (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263:209–223

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J et al (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98:12485–12490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. DR E (2001) Matrix metalloproteinase inhibitors in cancer therapy. In: Clende. Humana Press, Totowa

    Google Scholar 

  70. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG Q V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science (80–)277:225–228

    Google Scholar 

  71. Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mañes S, Mira E, Barbacid MM, Ciprés A, Fernández-Resa P et al (1997) Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 272:25706–25712

    Article  PubMed  Google Scholar 

  73. Whitelock JM, Murdoch AD, Iozzo RVUP (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    Article  CAS  PubMed  Google Scholar 

  74. Yu QSI (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  PubMed Central  Google Scholar 

  75. Noë V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    PubMed  Google Scholar 

  76. Kajita M, Itoh Y, Chiba T, Mori HOA (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biol 34(4):2041–2051

    Article  CAS  Google Scholar 

  78. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer–trials and tribulations. Science 295(80):2387–2392

    Google Scholar 

  79. Anfinsen CB Christian B (1995) Adv Prot Chem 47. (Academic Press)

    Google Scholar 

  80. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Google Scholar 

  81. Davies B, Mi1es DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1993) Activity of type IV collagenases in benign and malignant breast disease. Brit J Cancer 67:1126–1131

    Google Scholar 

  82. Davies B, Waxman J, Wasan H et al (1993) Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res 53:5365–5369

    CAS  PubMed  Google Scholar 

  83. Jung K, Nowak L, Lein M, Priem F, Schnorr D, Loening SA (1997) Matrix metalloproteinases I and 3, tissue inhibitor of metalloproteinase-l and the comp1ex of metalloproteinase- I tissue inhibitor in plasma of patients with prostate cancer. Int J Cancer 74:220–223

    Article  CAS  PubMed  Google Scholar 

  84. Halaka A, Bunning R, Bird C, Gibson M, Reynolds J (1983) Production of collagenase and inhibitor (TIMP) by intracranial tumors and dura in vitro. J Neurosurg 59:444–461

    Article  Google Scholar 

  85. Boudreau N, Sympson C, Werb Z, Bissell M (1995) Suppression ofiCE and apoptosis in mammary epithelial cells by extracellular matrix. Seience 267:891–893

    Article  CAS  Google Scholar 

  86. Alexander CM, Howard E w, BisselI MJ, Werb Z (1996) Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinase- l transgene. J Cell Biol 135:1667–1677

    Article  Google Scholar 

  87. Arribas J, Coodly L, Vollmer P, Kishimoto TK, Rosejohn S, Massagué J (1996) Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem 271:11376–11382

    Article  CAS  PubMed  Google Scholar 

  88. Levi E, Fridman R, Miao H, Ma Y, Yayon A, Vlodavsky I et al (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor. Proc Natl Acad Sci U S A 93:7069–7074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suzuki M, Raab G, Moses M, Femandez C, Klagsbrun M (1997) Matrix metalloproteinase- 3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Bio Chem 272:31730–31737

    Article  CAS  Google Scholar 

  90. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JDAH et al (1994) Processing of tumour necrosis factor-a precursor by metalloproteinases. Nature 370:555–557

    Article  CAS  PubMed  Google Scholar 

  91. Thrailkill KM, QuarIes LD, Nagase H, Suzuki K, Serra DM, Fowlkes JL (1995) Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology 136:3527–3533

    Article  CAS  PubMed  Google Scholar 

  92. Rajah R, Nunn SE, Herrick DJ, Grunstein MM, Cohen P (1996) Leukotriene d-4 induces MMP-l, which functions as an IGFBP protease in human airway smooth muscle cells. Am J Phys 15:1014–L1022

    Google Scholar 

  93. Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metast Rev 9:203–226

    Article  CAS  Google Scholar 

  94. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-betal release. Biochem J 322:809–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  CAS  PubMed  Google Scholar 

  96. StCroix B, Sheehan C, Rak J, Florenes V, Slingerland J, Kerbel R (1998) E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27Kip1. J Cell Biol 142:557–571

    Article  CAS  Google Scholar 

  97. Mareei M, Kint J, Meyvisch C (1979) Methods of study of the invasion of malignant C3H mouse fibroblasts into embryonic chick heart in vitro. Virchows Arch B 30:95–111

    Google Scholar 

  98. Thorgeirsson U, Liotta L, Kalebic T, Margulies I, Thomas K, Rios-Candelore ME et al (1982) Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. J Natl Cancer Inst 69:1049–1054

    Google Scholar 

  99. Repesh L (1989) A new in vitro assay for quantitating tumor ceH invasion. Invas Metast 9:192–208

    Google Scholar 

  100. Hendrix M, Seftor E, Seftor R, Fidler I (1987) A simple quantitative assay for studying the invasive potential of high and low metastatic variants. Cancer Lett 38:137–147

    Google Scholar 

  101. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    Google Scholar 

  102. Schultz, R., Silberman, S., Persky, B., Bajkowski, A., and Carmichael D (1988) Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine BI6-FlO melanoma cells. Cancer Res 48:5539–5545

    Google Scholar 

  103. Powell W c, Knox JD, Navre M, Grogan TM, Kittelson J, Nagle RB et al (1993) Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 53:417–422

    CAS  PubMed  Google Scholar 

  104. Deryugina E, Luo G, Reisfeld R, Bourdon M, Strongin A (1997) Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res 17:3201–3210

    CAS  PubMed  Google Scholar 

  105. Gomez D, Alonso D, Yoshiji H, Thorgeirsson U (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological function. Eur J Cell Biol 74:111–122

    Google Scholar 

  106. Chirivi RGS, Garofalo A, Crimmin MJ, Bawden LJ, Stoppacciaro AB, PD et al (1994) Inhibition of the metastatic spread and growth of BI6-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58:460–464

    Google Scholar 

  107. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FR (1993) A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 53:2087–2091

    CAS  PubMed  Google Scholar 

  108. An ZL, Wang XE, Willmott N, Chander SK, Tickle S, Docherty AJP et al (1997) Conversion of highly malignant colon cancer from an aggressive to a controlled disease by oral administration of a metalloproteinase inhibitor. Clin Exp Metastas 15:184–195

    Article  CAS  Google Scholar 

  109. Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  CAS  PubMed  Google Scholar 

  110. Lin CY et al (2011) Matrix metalloproteinase-9 cooperates with transcription factor snail to induce epithelial-mesenchymal transition. Cancer Sci 102(4):815–827

    Article  CAS  PubMed  Google Scholar 

  111. Gavrilovic J, Moens GTJ et al (1990) Expression of transfected transforming growth factor alpha induces a motile fibroblast-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul 1(13):1003–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gilles C, Polette MCC et al (2001) Contribution of MT1-MMP and of human laminin-5 gamma2 chain degradation to mammary epithelial cell migration. J Cell Sci 114(16):2967–2976

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Buisson AC, Zahm JMPM et al (1996) Gelatinase B is involved in the in vitro wound repair of human respiratory epithelium. J Cell Physiol 166(2):413–426

    Article  CAS  PubMed  Google Scholar 

  114. Legrand C, Gilles CZJ et al (1999) Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146(2):517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Daja MM, Niu XZZ et al (2003) Characterization of expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in prostate cancer cell lines. Prostate Cancer Prostatic Dis 6(1):15–26

    Article  CAS  PubMed  Google Scholar 

  116. Gilles C, Polette MPJ et al (1994) Epithelial-to-mesenchymal transition in HPV-33-transfected cervical keratinocytes is associated with increased invasiveness and expression of gelatinase A. Int J Cancer 59(5):661–666

    Article  CAS  PubMed  Google Scholar 

  117. Yokoyama K, Kamata NFR et al (2003) Increased invasion and matrix metalloproteinase-2 expression by Snailinduced mesenchymal transition in squamous cell carcinomas. Int J Oncol 22(4):891–898

    CAS  PubMed  Google Scholar 

  118. Hurst NG, Stocken DD, Wilson S, Keh C, Wakelam MJIT (2007) Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. Br J Cancer 97(7):971–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wilson S, Wakelam MJ, Hobbs RF, Ryan AV, Dunn JA R, VD et al. (2006) Evaluation of the accuracy of serum MMP-9 as a test for colorectal cancer in a primary care population. BMC Cancer 6(258)

    Google Scholar 

  120. Eissa S, Ali-Labib R, Swellam M, Bassiony M, Tash FE-Z, TM. (2007) Noninvasive diagnosis of bladder cancer by detection of matrix metalloproteinases (MMP-2 and MMP-9) and their inhibitor (TIMP-2) in urine. Eur Urol 52(5):1388–1396

    Article  CAS  PubMed  Google Scholar 

  121. Roy R, Louis G, Loughlin KR, Wiederschain D, Kilroy SM L, CC et al (2008) Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res 14(20):6610–6617

    Google Scholar 

  122. Cribier B, Noacco G, Peltre BGE (2002) Stromelysin 3 expression: a useful marker for the differential diagnosis dermatofibroma versus dermatofibrosarcoma protuberans. J Am Acad Dermatol 46(3):408–413

    Article  PubMed  Google Scholar 

  123. Kim HJ, Lee JY, Kim SH, Seo YJ, Lee JH, Park JK et al (2007) Stromelysin-3 expression in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans: comparison with factor XIIIa and CD34. Br J Dermatol 157(2):319–324

    Article  CAS  PubMed  Google Scholar 

  124. Morrison CJ, Butler GS, Rodriguez DOC (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21(5):645–653

    Article  CAS  PubMed  Google Scholar 

  125. Terp GE, Cruciani G, Christensen ITJF (2002) Structural differences of matrix metalloproteinases with potential implications for inhibitor selectivity examined by the GRID/CPCA approach. J Med Chem 45(13):2675–2684

    Article  CAS  PubMed  Google Scholar 

  126. Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D M, M et al. (2005) Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 87(3–4):393–402.

    Google Scholar 

  127. Chung L, Shimokawa K, Dinakarpandian D, Grams F FG, H N (2000) Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J Biol Chem 275(38):29610–29617

    Google Scholar 

  128. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL F, GB Visse R et al (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J 23(15):3020–3030

    Google Scholar 

  129. Manka SW, Carafoli F, Visse R, Bihan D, Raynal N F, RW et al (2012) Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci U S A 109(31):12461–12466

    Google Scholar 

  130. Kousidou OC, Mitropoulou TN, Roussidis AEKD, Theocharis ADKN (2005) Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int J Oncol 26(4):1101–1109

    CAS  PubMed  Google Scholar 

  131. Mitropoulou TN, Tzanakakis GN, Kletsas D KH, NK K (2003) Letrozole as a potent inhibitor of cell proliferation and expression of metalloproteinases (MMP-2 and MMP-9) by human epithelial breast cancer cells. Int J Cancer J Int du Cancer 104(2):155–160

    Google Scholar 

  132. Hua J MR (1996) Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res 56:5279–5284 56:5279–5284

    Google Scholar 

  133. Yonemura Y, Endo Y, Fujita H, Kimura K, Sugiyama K et al (2001) Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J Exp Clin Cancer Res 20:205–212

    CAS  PubMed  Google Scholar 

  134. Kondraganti S, Mohanam S, Chintala SK, Kin Y, Jasti SL et al. (2000) Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res 60:6851–6855, 60:6851–6868

    Google Scholar 

  135. Elkin M, Reich R, Nagler A, Aingorn E, Pines M et al (1999) Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clin Cancer Res 5:1982–1988, 5:1982–1988

    Google Scholar 

  136. Silletti S, Kessler T, Goldberg J, Boger DL C DA (2001) Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci U S A 98:119–124

    Google Scholar 

  137. Liu S, Netzel-Arnett S, Birkedal-Hansen HLS (2000) Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res 60:6061–6067

    CAS  PubMed  Google Scholar 

  138. Hidalgo MES (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93:178–193

    Article  CAS  PubMed  Google Scholar 

  139. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP et al (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17:768–774

    Article  CAS  PubMed  Google Scholar 

  140. Falardeau P, Champagne P, Poyet P, Hariton C DE (2001) Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol 28:620–625

    Google Scholar 

  141. Garbisa S, Biggin S, Cavallarin N, Sartor L, Benelli R et al (1999) Tumor invasion: molecular shears blunted by green tea. Nat Med 5:1216

    Article  CAS  PubMed  Google Scholar 

  142. Jiang MC, Liao CFLP (2001) Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells. Biochem Biophys Res Commun 282:671–677

    Article  CAS  PubMed  Google Scholar 

  143. Ala-aho R, Johansson N, Grénman R, Fusenig NE, López-Otín C et al (2000) Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-gamma is associated with activation of extracellular signal-regulated kinase-1,2 and STAT1. Oncogene 19:248–257

    Article  CAS  PubMed  Google Scholar 

  144. Ma Z, Qin HBE (2001) Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-beta: critical role of STAT-1alpha. J Immunol 167:5150–5159

    Article  CAS  PubMed  Google Scholar 

  145. Slaton JW, Karashima T, Perrotte P, Inoue K, Kim SJ et al (2001) Treatment with low-dose interferon-alpha restores the balance between matrix metalloproteinase-9 and E-cadherin expression in human transitional cell carcinoma of the bladder. Clin Cancer Res 7:2840–2853

    CAS  PubMed  Google Scholar 

  146. Mengshol JA, Mix KSBC (2002) Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull’s-eye or missing the mark? Arthritis Rheum 46:13–20

    Article  CAS  PubMed  Google Scholar 

  147. Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE et al (2002) Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62:3335–3339

    CAS  PubMed  Google Scholar 

  148. Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McGaha TL, Phelps RG, Spiera HBC (2002) Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming growth- factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol 118:461–470

    Article  CAS  PubMed  Google Scholar 

  150. Simon C, Goepfert HBD (1998) Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res 58:1135–1139

    CAS  PubMed  Google Scholar 

  151. Johansson N, Ala-aho R, Uitto V, Grénman R, Fusenig NE et al (2000) Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113:227–235

    CAS  PubMed  Google Scholar 

  152. Futamura M, Kamiya S, Tsukamoto M, Hirano A, Monden Y et al (2001) Malolactomycin D, a potent inhibitor of transcription controlled by the Ras responsive element, inhibits Ras-mediated transformation activity with suppression of MMP-1 and MMP-9 in NIH3T3 cells. Oncogene 20:6724–6730

    Article  CAS  PubMed  Google Scholar 

  153. Zhang Y, Thant AA, Machida K, Ichigotani Y, Naito Y et al (2002) Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res 62:3962–3965

    CAS  PubMed  Google Scholar 

  154. Karin MCL (2001) AP-1--glucocorticoid receptor crosstalk taken to a higher level. J Endocrinol 169:447–451

    Article  CAS  PubMed  Google Scholar 

  155. Al. ST et al (2002) Inhibition of activator protein-1 binding activity and phosphatidylinositol 3-kinase pathway by nobiletin, a polymethoxy flavonoid, results in augmentation of tissue inhibitor of metalloproteinases-1 production and suppression of production of matrix meta. Cancer Res 62:1025–1029

    Google Scholar 

  156. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ et al (2000) Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem 275:10405–10412

    Article  CAS  PubMed  Google Scholar 

  157. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(59):2615–2622

    CAS  PubMed  Google Scholar 

  158. Ala-aho R, Grénman R, Seth PKV (2002) Adenoviral delivery of p53 gene suppresses expression of collagenase-3 (MMP-13) in squamous carcinoma cells. Oncogene 21:1187–1195

    Article  CAS  PubMed  Google Scholar 

  159. Annabi B, Lachambre MP, Bousquet-Gagnon N, Page M, Gingras D et al (2002) Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta 1542:209–220

    Article  CAS  PubMed  Google Scholar 

  160. Bassi DE, Lopez De Cicco R, Mahloogi H, Zucker S, Thomas G et al (2001) Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc Natl Acad Sci U S A 98:10326–10331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Khatib AM, Siegfried G, Chrétien M, Metrakos PSN (2002) Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol 160:1921–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Huang X, Chen S, Xu L, Liu Y, Deb DK et al (2005) Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res 65:3470–3478

    Article  CAS  PubMed  Google Scholar 

  163. Wang S, Cheng Y, Wang F, Sun L, Liu C et al (2008) Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomed Pharmacother 62:297–302

    Article  CAS  PubMed  Google Scholar 

  164. Berton A, Rigot V, Huet E, Decarme M, Eeckhout Y et al (2001) Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases a and B by long-chain unsaturated fatty acids. J Biol Chem 276:20458–20465

    Article  CAS  PubMed  Google Scholar 

  165. Huxley-Jones J, Clarke TK, Beck C, Toubaris G, Robertson DL et al (2007) The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. BMC Evol Biol 7:63

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y et al (2003) Ageladine a: an antiangiogenic matrix metalloproteinase inhibitor from the marine sponge Agelas Nakamurai. J Am Chem Soc 125:15700–15701

    Article  CAS  PubMed  Google Scholar 

  167. Lelièvre Y, Bouboutou R, Boiziau JCT (1989) Inhibition of synovial collagenase by actinonin. Study of structure/activity relationship. Pathol Biol 37:43–46

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Department of Science and Technology (DST)—INSPIRE—India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahitosh Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rajesh, Y., Mandal, M. (2017). Regulation of Extracellular Matrix Remodeling and Epithelial-Mesenchymal Transition by Matrix Metalloproteinases: Decisive Candidates in Tumor Progression. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_9

Download citation

Publish with us

Policies and ethics