Skip to main content

Sparse Representations

  • Chapter
  • First Online:
Digital Signal Processing with Matlab Examples, Volume 3

Part of the book series: Signals and Communication Technology ((SCT))

  • 7443 Accesses

Abstract

Sparse representations intend to represent signals with as few as possible significant coefficients. This is important for many applications, like for instance compression. When using wavelets it is frequently noticed that a great compression rate can be obtained, with almost unnoticeable loss of information. Supposing that the signal comes from a sensor, it would be very convenient to have the sensor yielding already compressed information. This is called ‘compressed sensing’. After a preliminary study in section two, the chapter attacks the core of the topic in section three. The next section is devoted to sparse representation in the context of images, including image decomposition in texture+cartoon, or in terms of patches, or by using morphological components. Some more concepts and tools were considered in section five, like for instance diffusion in 2D, or Bregman related algorithms. An almost unexpected field of application that has emerged is matrix completion, which is treated in section six. Finally, the chapter includes some experiments about denoising based on total variation (TV), picture reconstruction, and text removal from images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Abeyruwan, Least Angle Regression (University of Miami, 2012). https://sites.google.com/site/samindaa/lars

  2. R. Acar, C.R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Adcock, An Introduction to Compressed Sensing (Department of Mathematics, Simon Fraser University, 2015). http://benadcock.org/wp-content/uploads/2015/11/AdcockBeijingTalk1.pdf

  4. B. Adcock, A.C. Hansen, C. Poon, B. Roman, Breaking the Coherence Barrier: Asymptotic Incoherence and Asymptotic Sparsity in Compressed Sensing (Department of Mathematics, Purdue University, 2013). arXiv preprint arXiv:1302.0561

  5. M.V. Afonso, J.M. Bioucas-Dias, M.A. Figueiredo, Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  6. M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE T. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  7. S.I. Amari, A. Cichocki, Information geometry of divergence functions. Bull. Polish Acad. Sci.: Tech. Sci. 58(1), 183–195 (2010)

    Google Scholar 

  8. F.J.A. Artacho, M. Jonathan, Recent results on Douglas-Rachford methods. Serdica Math. J. 39, 313–330 (2013)

    MathSciNet  MATH  Google Scholar 

  9. H. Attouch, Alternating Minimization and Projection Algorithms. From Convexity to Nonconvexity (2009). http://events.math.unipd.it/nactde09/sites/default/files/attouch.pdf

  10. J.F. Aujol, G. Aubert, L. Blanc-Féraud, A. Chambolle, Image decomposition into a bounded variation component and an oscillating component. J. Math. Imag. Vision 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  11. J.F. Aujol, G. Gilboa, Implementation and parameter selection for BV-Hilbert space regularization. Technical report, UCLA, 2004. CAM04-66

    Google Scholar 

  12. J.F. Aujol, G. Gilboa, T. Chan, S. Osher, Structure-texture image decomposition–modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67(1), 111–136 (2006)

    Google Scholar 

  13. M. Ayazoglu, M. Sznaier, O.I. Camps, Fast algorithms for structured robust principal component analysis, in Proceedings IEEE Conference on Computer Vision and Pattern Recognition,(CVPR), pp. 1704–1711 (2012)

    Google Scholar 

  14. W.U. Bajwa, J. Haupt, A.M. Sayeed, R. Nowak, Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010)

    Article  Google Scholar 

  15. A. Banerjee, S. Merugu, I.S. Dhillon, J. Ghosh, Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  16. C. Bao, J.F. Cai, H. Ji, Fast sparsity-based orthogonal dictionary learning for image restoration, in Proceedings International Conference Computer Vision, 2013

    Google Scholar 

  17. T. Baran, D. Wei, A.V. Oppenheim, Linear programming algorithms for sparse filter design. IEEE T. Signal Process. 58(3), 1605–1617 (2010)

    Article  MathSciNet  Google Scholar 

  18. R.G. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4) (2007)

    Google Scholar 

  19. M. Baumann, Real-time robust principal component analysis for video surveillance. Master’s thesis, ETH Zurich, 2010

    Google Scholar 

  20. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Becker, J. Bobin, E.J. Candès, Nesta: a fast and accurate first-order method for sparse recovery. SIAM J. Imag. Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.R. Berger, Z. Wang, J. Huang, S. Zhou, Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48(11), 164–174 (2010)

    Article  Google Scholar 

  23. J.M. Bioucas-Dias, M.A. Figueiredo, A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  24. J. Bobin, J.L. Starck, J.M. Fadili, Y. Moudden, D.L. Donoho, Morphological component analysis: an adaptive thresholding strategy. IEEE T. Image Process. 16(11), 2675–2681 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.D. Boissonnat, F. Nielsen, R. Nock, Bregman Voronoi diagrams. Discrete Computat. Geometry 44(2), 281–307 (2010)

    MathSciNet  MATH  Google Scholar 

  26. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  MATH  Google Scholar 

  27. P. Breen, Algorithms for sparse approximation. Master’s thesis, University of Edinburgh, 2009. Year 4 Project, School of Mathematics

    Google Scholar 

  28. L.M. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Buades, T.M. Le, J.-M. Morel, L.A. Vese, Fast cartoon + texture image filters. IEEE T. Image Process. 19(8), 1978–1986 (2010)

    Article  MathSciNet  Google Scholar 

  30. J. Bush, Bregman algorithms. Master’s thesis, University of Santa Barbara, CA, USA, 2011. Senior Thesis

    Google Scholar 

  31. C.F. Cadieu, B.A. Olshausen, Learning transformational invariants from natural movies, in Proceedings NIPS, pp. 209–216 (2008)

    Google Scholar 

  32. J.F. Cai, E.J. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Cai, R. Chan, T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imag. Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Candes, T. Tao, Decoding by linear programming. IEEE T. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Candes, T. Tao, The Dantzig selector: statistical estimation when P is much larger than N. Ann. Stat 2313–2351 (2007)

    Google Scholar 

  37. E.J. Candes, The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9), 589–592 (2008)

    Google Scholar 

  38. E.J. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. E.J. Candes, Y. Plan, Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

    Article  Google Scholar 

  40. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE T. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mgz. 21–30 (2008)

    Google Scholar 

  43. S. Cao, Q. Wang, Y. Yuan, J. Yu, Anomaly event detection method based on compressive censing and iteration in wireless sensor networks. J. Netw. 9(3), 711–718 (2014)

    Google Scholar 

  44. C. Caramanis, S. Sanghavi, Large Scale Optimization (The University of Texas at Austin, Lecture 24 of EE381V Course, 2012). http://users.ece.utexas.edu/~sanghavi/courses/scribed_notes/Lecture_24_Scribe_Notes.pdf

  45. V. Caselles, A. Chambolle, M. Novaga, Total variation in imaging, in Handbook of Mathematical Methods in Imaging, pp. 1016–1057 (Springer Verlag, 2011)

    Google Scholar 

  46. Y. Censor, A. Lent, An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34(3), 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Chambolle, P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Chan, S. Esedoglu, F. Park, A. Yip, Recent developments in total variation image restoration. Math. Models Comput. Vision 17, (2005)

    Google Scholar 

  49. T.F. Chan, S. Esedoglu, Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. T.F. Chan, S. Esedoglu, F.E. Park, Image decomposition combining staircase reduction and texture extraction. J. Visual Commun. Image Represent. 18(6), 464–486 (2007)

    Article  Google Scholar 

  51. V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A.S. Willsky, Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21(2), 572–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Chatterjee, I.P.P. Milanfar, Denoising using the K-SVD Method (EE 264 Course, University of California at Santa Cruz, 2007). https://users.soe.ucsc.edu/~priyam/ksvd_report.pdf

  53. K.M. Cheman, Optimization techniques for solving basis pursuit problems. Master’s thesis, North Carolina State Univ., Raleigh, NC, USA, 2006

    Google Scholar 

  54. F. Chen, C.C.P. Wei, Y.C. Wang, Low-rank matrix recovery with structural incoherence for robust face recognition, in Proceedings IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), pp. 2618–2625 (2012)

    Google Scholar 

  55. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. E.C. Chi, H. Zhou, G.K. Chen, D.O. Del Vecchyo, K. Lange, Genotype imputation via matrix completion. Genome Res. 23(3), 509–518 (2013)

    Article  Google Scholar 

  57. M.G. Christensen, S.H. Jensen, On compressed sensing and its application to speech and audio signals, in Proceedings 43th IEEE Asilomar Conference on Signals, Systems and Computers, pp. 356–360 (2009)

    Google Scholar 

  58. I. Cimrak, Analysis of the bounded variation and the G regularization for nonlinear inverse problems. Math. Meth. Appl. Sci. 33(9), 1102–1111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic analysis of the space BV. Revista Matematica Iberoamericana 19(1), 235–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Coifman, F. Geshwind, Y. Meyer, Noiselets. Appl. Comput. Harmonic Anal. 10, 27–44 (2001)

    Article  MathSciNet  Google Scholar 

  61. P.L. Combettes, J.C. Pesquet, Proximal splitting methods in signal processing, in Fixed-point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212 (Springer, 2011)

    Google Scholar 

  62. S.B. Damelin, W. Jr, Miller, The Mathematics of Signal Processing (Cambridge University Press, 2012)

    Google Scholar 

  63. I. Daubechies, M. Fornasier, I. Loris, Accelerated projected gradient method for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14(5–6), 764–792 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok, Introduction to compressed sensing, eds. by Y.C. Eldar, G. Kutyniok. Compressed Sensing (Cambridge University Press, 2013)

    Google Scholar 

  65. F. De la Torre, M.J. Black, Robust principal component analysis for computer vision, in Proceedings Eighth IEEE International Conference on Computer Vision, (ICCV ), vol. 1, pp. 362–369 (2001)

    Google Scholar 

  66. G. Dogan, P. Morin, R.H. Nochetto, A variational shape optimization approach for image segmentation with a Mumford-Shah functional. SIAM J. Sci. Comput. 30(6), 3028–3049 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Donoho, J. Tanner, Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. D.L. Donoho, Compressed sensing. IEEE T. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  69. D.L. Donoho, M. Gavish, A. Montanari, The phase transition of matrix recovery from gaussian measurements matches the minimax MSE of matrix denoising. Proc. Natl. Acad. Sci. 110(21), 8405–8410 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. D.L. Donoho, J. Tanner, Precise undersampling theorems. Proc. IEEE 98(6), 913–924 (2010)

    Article  Google Scholar 

  71. D.L. Donoho, Y. Tsaig, Fast solution of L1-norm minimization problems when the solution may be sparse. IEEE T. Inf. Theory 54(11), 4789–4812 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  72. I. Drori, D.L. Donoho, Solution of L1 minimization problems by LARS/homotopy methods, in Proceedings IEEE International Conference Acoustics, Speech and Signal Processing, ICASSP, vol. 3 (2006)

    Google Scholar 

  73. M.F. Duarte, Y.C. Eldar, Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  74. J. Eckstein, Splitting methods for monotone operators with applications to parallel optimization. Ph.D. thesis, MIT, 1989

    Google Scholar 

  75. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression. Ann. Stat. 32(2), 407–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  76. M. Elad, Sparse and Redundant Representations (Springer Verlag, 2010)

    Google Scholar 

  77. M. Elad, Sparse and redundant representation modeling–what next? IEEE Signal Process. Lett. 19(12), 922–928 (2012)

    Google Scholar 

  78. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE T. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  79. M. Elad, M.A. Figueiredo, Y. Ma, On the role of sparse and redundant representations in image processing. Proc. IEEE 98(6), 972–982 (2010)

    Article  Google Scholar 

  80. J. Ender, A brief review of compressive sensing applied to radar, in Proceedings 14th International Radar Symposium (IRS), pp. 3–16 (2013)

    Google Scholar 

  81. M.A. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Selected Topics in. Signal Process. 1(4), 586–597 (2007)

    Google Scholar 

  82. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser, 2010)

    Google Scholar 

  83. K. Fountoulakis, J. Gondzio, P. Zhlobich, Matrix-free interior point method for compressed sensing problems. Math. Programm. Comput. 1–31 (2012)

    Google Scholar 

  84. J. Friedman, T. Hastie, R. Tibshirani, A note on the group Lasso and a sparse group Lasso (Dept. Statistics, Stanford University, 2010) arXiv preprint arXiv:1001.0736

  85. L. Gan, Block compressed sensing of natural images, in Proceedings IEEE International Conference Digital Signal Processing, pp. 403–406 (2007)

    Google Scholar 

  86. S. Gandy, I. Yamada, Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix. J. Math-for-Indus. 2(5), 147–156 (2010)

    MathSciNet  MATH  Google Scholar 

  87. V. Ganesan, A study of compressive sensing for application to structural helath monitoring. Master’s thesis, University of Central Florida, 2014

    Google Scholar 

  88. J. Gao, Q. Shi, T.S. Caetano, Dimensionality reduction via compressive sensing. Pattern Recogn. Lett. 33(9), 1163–1170 (2012)

    Article  Google Scholar 

  89. P. Getreuer, Chan-Vese segmentation. Image Processing On Line (2012)

    Google Scholar 

  90. P. Getreuer, Rudin-osher-fatemi total variation denoising using split Bregman. Image Processing On Line 10 (2012)

    Google Scholar 

  91. J.R. Gilbert, C. Moler, R. Schreiber, Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13(1), 333–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  92. J. Gilles, Noisy image decomposition: a new structure, texture and noise model based on local adaptivity. J. Math. Imag. Vision 28(3), 285–295 (2007)

    Article  MathSciNet  Google Scholar 

  93. J. Gilles, Image decomposition: theory, numerical schemes, and performance evaluation. Adv. Imag. Electron Phys. 158, 89–137 (2009)

    Article  Google Scholar 

  94. T. Goldstein, B. O’Donoghue, S. Setzer, R. Baraniuk, Fast alternating direction optimization methods. SIAM J. Imag. Sci. 7(3), 1588–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  95. T. Goldstein, S. Osher, The split Bregman method for L1 regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  96. Y. Gousseau, J.M. Morel, Are natural images of bounded variation? SIAM J. Math. Anal. 33(3), 634–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  97. X. Guo, S. Li, X. Cao, Motion matters: a novel framework for compressing surveillance videos, in Proceedings 21st ACM International Conference on Multimedia, pp. 549–552 (2013)

    Google Scholar 

  98. M. Hardt, R. Meka, P. Raghavendra, B. Weitz, Computational Limits for Matrix Completion (IBM Research Almaden, 2014). arXiv preprint arXiv:1402.2331

  99. J. Haupt, W.U. Bajwa, M. Rabbat, R. Nowak, Compressed sensing for networked data. IEEE Signal Process. Mag. 25(2), 92–101 (2008)

    Article  Google Scholar 

  100. K. Hayashi, M. Nagahara, T. Tanaka, A user’s guide to compressed sensing for communications systems. IEICE Trans. Commun. 96(3), 685–712 (2013)

    Article  Google Scholar 

  101. A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  102. H. Huang, S. Misra, W. Tang, H. Barani, H. Al-Azzawi, Applications of Compressed Sensing in Communications Networks (New Mexico State University, USA, 2013). arXiv preprint arXiv:1305.3002

  103. Y. Huang, J.L. Beck, S. Wu, H. Li, Robust Bayesian compressive sensing for signals in structural health monitoring. Comput.-Aid. Civil Infrastruct. Eng. 29(3), 160–179 (2014)

    Google Scholar 

  104. H. Jung, K. Sung, K.S. Nayak, E.Y. Kim, J.C. Ye, K-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009)

    Article  Google Scholar 

  105. O. Kardani, A.V. Lyamin, K. Krabbenhoft, A comparative study of preconditioning techniques for large sparse systems arising in finite element analysis. IAENG Intl. J. Appl. Math. 43(4), 1–9 (2013)

    MathSciNet  Google Scholar 

  106. S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale L1-regularized least squares. IEEE J. Sel. Top. Sign. Process. 1(4), 606–617 (2007)

    Article  Google Scholar 

  107. M. Kowalski, B. Torrésani, Structured sparsity: from mixed norms to structured shrinkage, in Proceedings SPARS’09-Signal Processing with Adaptive Sparse Structured Representations (2009)

    Google Scholar 

  108. G. Kutyniok, Theory and applications of compressed sensing. GAMM-Mitteilungen 36(1), 79–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  109. V. Le Guen, Cartoon+ Texture Image Decomposition by the TV-L1 Model. IPOL, Image Processing On Line (2014). http://www.ipol.im/pub/algo/gjmr_line_segment_detector/

  110. F. Lenzen, F. Becker, J. Lellmann, Adaptive second-order total variation: an approach aware of slope discontinuities, in Scale Space and Variational Methods in Computer Vision, pp. 61–73 (Springer, 2013)

    Google Scholar 

  111. Z. Li, Y. Zhu, H. Zhu, M. Li, Compressive sensing approach to urban traffic sensing, in Proceedings IEEE International Conference Distributed Computing Systems, (ICDCS), pp. 889–898 (2011)

    Google Scholar 

  112. H. Liebgott, A. Basarab, D. Kouame, O. Bernard, D. Friboulet, Compressive sensing in medical ultrasound, in Proceedings IEEE International Ultrasonics Symposium, (IUS), pp. 1–6 (2012)

    Google Scholar 

  113. F. Lin, Z. Hu, S. Hou, J. Yu, C. Zhang, N. Guo, K. Currie, Cognitive radio network as wireless sensor network (ii): Security consideration, in Proceedings IEEE National Aerospace and Electronics Conference,(NAECON), pp. 324–328 (2011)

    Google Scholar 

  114. Z. Lin. Some Software Packages for Partial SVD Computation (School of EECS, Peking University, 2011). arXiv preprint arXiv:1108.1548

  115. Z. Lin, M. Chen, Y. Ma, The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-rank Matrices (Microsoft Research Asia, 2010). arXiv preprint arXiv:1009.5055

  116. Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, Y. Ma. Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-rank Matrix (Microsoft Research Asia, 2009). http://yima.csl.illinois.edu/psfile/rpca_algorithms.pdf

  117. D. Liu, T. Zhou, H. Qian, C. Xu, Z. Zhang, A nearly unbiased matrix completion approach, in Machine Learning and Knowledge Discovery in Databases, pp. 210–225 (Springer Verlag, 2013)

    Google Scholar 

  118. G. Liu, W. Kang, IDMA-Based compressed sensing for ocean monitoring information acquisition with sensor networks. Math. Probl. Eng. 2014, 1–13 (2014)

    MathSciNet  Google Scholar 

  119. C. Luo, F. Wu, J. Sun, C.W. Chen, Compressive data gathering for large-scale wireless sensor networks, in Proceedings 15th ACM Annual International Conference on Mobile Computing and Networking, pp. 145–156 (2009)

    Google Scholar 

  120. M. Lustig, D. Donoho, J.M. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  121. M. Lysaker, X.C. Tai, Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vision 66(1), 5–18 (2006)

    Article  MATH  Google Scholar 

  122. J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE T. Image Process. 17(1), 53–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  123. J. Mairal, B. Yu, Complexity Analysis of the Lasso Regularization Path (Department of Statistics, University of California at Berkeley, 2012) arXiv preprint arXiv:1205.0079

  124. D. Mascarenas, A. Cattaneo, J. Theiler, C. Farrar, Compressed sensing techniques for detecting damage in structures. Struct. Health Monit. (2013)

    Google Scholar 

  125. P. Maurel, J.F. Aujol, G. Peyré, Locally parallel texture modeling. SIAM J. Imag. Sci. 4(1), 413–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  126. D. McMorrow, Compressive sensing for DoD sensor systems. Technical report (MITRE Corp, 2012)

    Google Scholar 

  127. J. Meng, H. Li, Z. Han, Sparse event detection in wireless sensor networks using compressive sensing, in Proceedings IEEE 43rd Annual Conference Information Sciences and Systems,(CISS), pp. 181–185 (2009)

    Google Scholar 

  128. Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis memorial lectures. AMS Bookstore 22 (2001)

    Google Scholar 

  129. M. Michenkova, Numerical Algorithms for Low-rank Matrix Completion Problems (Swiss Federal Institute of Technology, Zurich, 2011). http://sma.epfl.ch/~anchpcommon/students/michenkova.pdf

  130. D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  131. S. Mun, J.E. Fowler, Block compressed sensing of images using directional transforms, in Proceedings IEEE International Conference Image Processing, (ICIP), pp. 3021–3024 (2009)

    Google Scholar 

  132. M. Nagahara, T. Matsuda, K. Hayashi, Compressive sampling for remote control systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(4), 713–722 (2012)

    Article  Google Scholar 

  133. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  134. Y. Nesterov, Smooth minimization of non-smooth functions. Math. Programm. 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  135. M. Nikolova, A variational approach to remove outliers and impulse noise. J. Math. Imag. Vision 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  136. R. Nowak, M. Figueiredo, Fast wavelet-based image deconvolution using the EM algorithm, in Proceedings 35th Asilomar Conference Signals, Systems and Computers (2001)

    Google Scholar 

  137. S. Oh, Matrix Completion: Fundamental Limits and Efficient Algorithms. Ph.D. thesis, Stanford University, 2010

    Google Scholar 

  138. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  139. B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  140. B.A. Olshausen, D.J. Field, Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14(4), 481–487 (2004)

    Article  Google Scholar 

  141. M.R. Osborne, B. Presnell, B.A. Turlach, A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  142. S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  143. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  144. I. Papusha, Fast Automatic Background Extraction Via Robust PCA (Caltech, 2011). http://www.cds.caltech.edu/~ipapusha/pdf/robust_pca_apps.pdf

  145. N. Parikh, S. Boyd, Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  146. J.C. Park, B. Song, J.S. Kim, S.H. Park, H.K. Kim, Z. Liu, W.Y. Song, Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT. Med. Phys. 39(3), 1207–1217 (2012)

    Article  Google Scholar 

  147. S. Patterson, Y. C. Eldar, I. Keidar, Distributed Compressed Sensing for Static and Time-varying Networks (Rensselaer Polytechnic Institute, 2013). arXiv preprint arXiv:1308.6086

  148. Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  149. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, in Proceedings IEEE Computer Society Workshop on Computer Vision, pp. 16–22 (1987)

    Google Scholar 

  150. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion. IEEE T. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  151. G. Peyre, Matrix Completion with Nuclear Norm Minimization. A Numerical Tour of Signal Processing (2014). http://gpeyre.github.io/numerical-tours/matlab/sparsity_3_matrix_completion/

  152. T. Pock, D. Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford-Shah functional, in Proceedings IEEE 12th International Conference on Computer Vision, pp. 1133–1140 (2009)

    Google Scholar 

  153. S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, Compressive sensing: from theory to applications, a survey. J. Commun. Netw. 15(5), 443–456 (2013)

    Article  Google Scholar 

  154. C. Quinsac, A. Basarab, D. Kouamé, Frequency domain compressive sampling for ultrasound imaging. Adv. Acoust. Vib. 1–16, 2012 (2012)

    Google Scholar 

  155. I. Ram, M. Elad, I. Cohen, Image processing using smooth ordering of its patches. IEEE T. Image Process. 22(7), 2764–2774 (2013)

    Article  MathSciNet  Google Scholar 

  156. M.A. Rasmussen, R. Bro, A tutorial on the Lasso approach to sparse modeling. Chemom. Intell. Lab. Syst. 119, 21–31 (2012)

    Article  Google Scholar 

  157. H. Rauhut, Compressive sensing and structured random matrices, ed. by Formasier. Theoretical Foundations and Numerical Methods for Sparse Recovery (Walter de Gruyter, Berlin, 2010)

    Google Scholar 

  158. J. Richy, Compressive sensing in medical ultrasonography. Master’s thesis, Kungliga Tekniska Högskolan, 2012

    Google Scholar 

  159. P. Rodríguez, B. Wohlberg, Fast principal component pursuit via alternating minimization, in Proceedings IEEE International Conference on Image Processing, (ICIP), pp. 69–79 (2013)

    Google Scholar 

  160. J. Romberg, Imaging via compressive sampling (introduction to compressive sampling and recovery via convex programming). IEEE Signal Process. Magz. 25(2), 14–20 (2008)

    Article  Google Scholar 

  161. R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  162. R. Rubinstein, M. Zibulevsky, M. Elad, Efficient implementation of the K-SVD algorithm and the Batch-OMP method. Technical report, Department of Computer Science, Technion, Israel, 2008. Technical CS–08

    Google Scholar 

  163. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  164. L. Ryzhik, Lecture Notes for Math 221 (Stanford University, 2013). http://math.stanford.edu/~ryzhik/STANFORD/STANF221-13/stanf221-13-notes.pdf

  165. M. Saunders, PDCO – Primal-dual Interior Methods (CME 338 Lecture Notes 7, Stanford University, 2013). https://web.stanford.edu/group/SOL/software/pdco/pdco.pdf

  166. M Schmidt, Least squares optimization with L1-norm regularization. Technical report, University of British Columbia, 2005. Project Report

    Google Scholar 

  167. I. Selesnick, Total Variation Denoising (an MM Algorithm) (New York University, 2012). http://eeweb.poly.edu/iselesni/lecture_notes/TVDmm/TVDmm.pdf

  168. I.W. Selesnick, Sparse Signal Restoration (New York University, 2010). http://eeweb.poly.edu/iselesni/lecture_notes/sparse_signal_restoration.pdf

  169. I.W. Selesnick, I. Bayram, Total Variation Filtering (New York University, 2010). http://eeweb.poly.edu/iselesni/lecture_notes/TVDmm/

  170. Y. Shen, Z. Wen, Y. Zhang, Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Meth. Softw. 29(2), 239–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  171. E.P. Simoncelli, B.A. Olshausen, Natural image statistics and neural representation. Ann. Rev. Neurosci. 24(1), 1193–1216 (2001)

    Article  Google Scholar 

  172. J.L. Starck, M. Elad, D. Donoho, Redundant multiscale transforms and their application for morphological component separation. Adv. Imag. Electron Phys. 132(82), 287–348 (2004)

    Article  Google Scholar 

  173. J.L. Starck, Y. Moudden, J. Bobin, M. Elad, D.L. Donoho, Morphological component analysis. Opt. Photon. 1–15 (2005)

    Google Scholar 

  174. J.L. Starck, F. Murtagh, J.M. Fadilii, Sparse Image and Signal Processing (Cambridge University Press, 2010)

    Google Scholar 

  175. D. Sundman, Compressed sensing: algorithms and applications. Master’s thesis, KTH Electrical Engineering, Stockholm, 2012. Licenciate thesis

    Google Scholar 

  176. R. Tibshirani, Regression shrinkage and selection via the Lasso. J. Royal Stat. Soc. 58, 267–288 1996). series B

    Google Scholar 

  177. J.A. Tropp, S.J. Wright, Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(6), 948–958 (2010)

    Article  Google Scholar 

  178. R. Valentine, Image Segmentation with the Mumford Shah Functional (2007). http://coldstonelabs.org/files/science/math/Intro-MS-Valentine.pdf

  179. S.A. Van De Geer, P. Bühlmann, On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3, 1360–1392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  180. L.A. Vese, S.J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  181. S. Wang, Z. Zhang, Colorization by matrix completion, in Proceedings 26th AAAI Conference on Artificial Intelligence, pp. 1169–1175 (2012)

    Google Scholar 

  182. Z. Wang, M.J. Lai, Z. Lu, J. Ye, Orthogonal Rank-one Matrix Pursuit for Low Rank Matrix Completion (The Biodesign Institue, Arizona State University, 2014) arXiv preprint arXiv:1404.1377

  183. S.J. Wei, X.L. Zhang, J. Shi, G. Xiang, Sparse reconstruction for SAR imaging based on compressed sensing. Prog. Electromagn. Res. 109, 63–81 (2010)

    Article  Google Scholar 

  184. J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1 (Teubner, Stuttgart, 1998)

    MATH  Google Scholar 

  185. S. Weisberg, Applied Linear Regression (Wiley, 1980)

    Google Scholar 

  186. S.J. Wright, R.D. Nowak, A.T. Figueiredo, Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  187. H. Xu, C. Caramanis, S. Mannor, Robust regression and Lasso. IEEE T. Inf. Theory 56(7), 3561–3574 (2010)

    Article  MathSciNet  Google Scholar 

  188. X. Xu, Online robust principal component analysis for background subtraction: a system evaluation on Toyota car data. Master’s thesis, University of Illinois at Urbana-Champaign, 2014

    Google Scholar 

  189. Y. Xu, W. Yin, A fast patch-dictionary method for whole-image recovery. Technical report, UCLA, 2013. CAM13-38

    Google Scholar 

  190. M. Yan, Y. Yang, S. Osher, Exact low-rank matrix completion from sparsely corrupted entries via adaptive outlier pursuit. J. Sci. Comput. 56(3), 433–449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  191. S. Yan, C. Wu, W. Dai, M. Ghanem, Y. Guo, Environmental monitoring via compressive sensing, in Proceedings ACM International Workshop on Knowledge Discovery from Sensor Data, pp. 61–68 (2012)

    Google Scholar 

  192. J. Yang, Y. Zhang, Alternating direction algorithms for L1 problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  193. W. Yin, D. Goldfarb, S. Osher, Total variation based image cartoon-texture decomposition. Technical report, Columbia Univ., Dep. Industrial Eng. & Operation Res., 2005. Rep. CU-CORC-TR-01

    Google Scholar 

  194. W. Yin, D. Goldfarb, S. Osher, A comparison of three total variation based texture extraction models. J. Vis. Commun. Image Represent. 18(3), 240–252 (2007)

    Article  Google Scholar 

  195. M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables. J. Royal Stat Soc 68(1), 49–67 (2007). series B

    Google Scholar 

  196. X. Yuan, J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods (Nanjing University, China, 2009). http://math.nju.edu.cn/~jfyang/files/LRSD-09.pdf

  197. B. Zhang, X. Cheng, N. Zhang, Y. Cui, Y. Li, Q. Liang, Sparse target counting and localization in sensor networks based on compressive sensing, in Proceedings IEEE INFOCOM, pp. 2255–2263 (2011)

    Google Scholar 

  198. J. Zhang, T. Tan, Brief review of invariant texture analysis methods. Pattern Recogn. 35(3), 735–747 (2002)

    Article  MATH  Google Scholar 

  199. Z. Zhang, A. Ganesh, X. Liang, Y. Ma, TILT: Transform invariant low-rank textures. Int. J. Comput. Vis. 99(1), 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  200. C. Zhao, X. Wu, L. Huang, Y. Yao, Y.C. Chang, Compressed sensing based fingerprint identification for wireless transmitters. Sci. World J. 1–9, 2014 (2014)

    Google Scholar 

  201. P. Zhao, B. Yu, On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006)

    MathSciNet  MATH  Google Scholar 

  202. S. Zhou, L. Kong, N. Xiu, New bounds for RIC in compressed sensing. J. Oper. Res. Soc. China 1(2), 227–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  203. X. Zhou, W. Yu, Low-rank modeling and its applications in medical image analysis. SPIE Defense Security Sens. 87500V (2013)

    Google Scholar 

  204. Z. Zhou, X. Li, J. Wright, E. Candes, Y. Ma, Stable principal component pursuit, in Proceedings IEEE International Symposium on Information Theory, (ISIT), pp. 1518–1522 (2010)

    Google Scholar 

  205. J. Zhu, D. Baron. Performance regions in compressed sensing from noisy measurements, in Proceedings IEEE 47th Annual Conference on Information Sciences and Systems, (CISS), pp. 1–6 (2013)

    Google Scholar 

  206. H. Zou, The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  207. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. Royal Stat. Soc. 67(2), 301–320 (2005). series B

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Giron-Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Giron-Sierra, J.M. (2017). Sparse Representations. In: Digital Signal Processing with Matlab Examples, Volume 3. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2540-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2540-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2539-6

  • Online ISBN: 978-981-10-2540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics