Skip to main content

Metabolic Engineering of Secondary Plant Metabolism

  • Chapter
  • First Online:
Plant Biotechnology: Principles and Applications
  • 2544 Accesses

Abstract

Metabolic engineering is a modulation of metabolic pathway(s) of the host either to increase the concentration of existing compounds or to produce a novel compound. It began with the engineering of microorganisms, and the concept has been extrapolated to plants opening newer promising perspectives. The high-value secondary metabolites such as drugs (e.g. paclitaxel, artemisinin and vincristine), dye and pigments, flavour and fragrances and food additives are the main target. Cloning and expression of gene(s) in host plant allow partial/complete reconstitution of biosynthetic pathways.

A major challenge for the commercialization of high-value secondary metabolites is their low production levels in planta. The continual demand for novel molecules with new or superior biological activities by the industry in recent years has resulted in a great interest in secondary metabolism. Metabolic engineering and pathway optimization with the aim to reduce costs and increase productivity are, therefore, the main focus of academia and industry.

Redirecting or stimulating a reaction/pathway requires an insight into the endogenous pathway(s) to understand the best intervention point(s). This chapter thus discusses the strategies developed to overcome bottlenecks for enhancing the production of high-value products in a heterologous background, without harming the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdin MZ, Israr M, Rehman RU et al (2003) Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med 69:289–299

    Article  CAS  PubMed  Google Scholar 

  • Alam P, Abdin M (2011) Over-expression of HMG-CoA reductase and amorpha-4, 11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA et al (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Aquil S, Husaini AM, Abdin MZ et al (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75:1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Beyer P, Al-Babili S, Ye X et al (2002) Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S–510S

    PubMed  Google Scholar 

  • Bodeker C, Bodeker G, Ong C et al (2005) WHO global atlas of traditional, complementary and alternative medicine. World Health Organization, Geneva

    Google Scholar 

  • Botella-Pavía P, Besumbes O, Phillips MA et al (2004) Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J 40:188–199

    Article  PubMed  Google Scholar 

  • Bouwmeester HJ, Wallaart TE, Janssen MH et al (1999) Amorpha-4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-J, Song S-H, Park S-H et al (2000) Amorpha-4, 11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch Biochem Biophys 383:178–184

    Google Scholar 

  • Chen DH, Ye HC, Li GF (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Aremisia annua L. transgenic plants via Agrobacterium tumefaciencs mediated transformation. Plant Sci 115:179–185

    Google Scholar 

  • Chen JL, Fang HM, Ji YP et al (2011) Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the beta-caryophyllene synthase gene. Planta Med 77:1759–1765

    Article  CAS  PubMed  Google Scholar 

  • Croteau R, Ketchum RE, Long RM et al (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev Proc Phytochem Soc Eur 5:75–97

    Article  CAS  Google Scholar 

  • Exposito O, Bonfill M, Moyano E et al (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anti Cancer Agents Med Chem 9:109–121

    Article  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  • Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    Article  CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Han JL, Liu BY, Ye HC et al (2006) Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol 48:482–487

    Article  CAS  Google Scholar 

  • Haseloff J, Ajioka J (2009) Synthetic biology: history, challenges and prospects. J R Soc Interface 6:S389–S391

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendrawati O, Woerdenbag HJ, Hille J et al (2010) Metabolic engineering strategies for the optimization of medicinal and aromatic plants: realities and expectations. J Med Spice Plants 15:111–126

    Google Scholar 

  • Hezari M, Croteau R (1997) Taxol biosynthesis: an update. Planta Med 63:291–295

    Article  CAS  PubMed  Google Scholar 

  • Ketchum RE, Rithner CD, Qiu D et al (2003) Taxus metabolomics: methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry 62:901–909

    Article  CAS  PubMed  Google Scholar 

  • Ketchum RE, Wherland L, Croteau RB (2007) Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures. Plant Cell Rep 26:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Miller JA, Allen RS et al (2007) Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5:26–37

    Article  CAS  PubMed  Google Scholar 

  • Lee O-S, Kang Y-M, Jung H-Y et al (2005) Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cell Dev Biol Plant 41:167–172

    Article  CAS  Google Scholar 

  • Li F-L, Ma X-J, Hu X-L et al (2013) Antisense-induced suppression of taxoid 14β-hydroxylase gene expression in transgenic Taxus× media cells. African J Biotechnol 10:8720–8728

    Google Scholar 

  • Liu B, Wang H, Du Z et al (2010) Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 30:689–694

    Google Scholar 

  • Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 72:11–20

    Article  CAS  PubMed  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  CAS  PubMed  Google Scholar 

  • Mercke P, Bengtsson M, Bouwmeester HJ et al (2000) Molecular Cloning, Expression, and Characterization of Amorpha-4, 11-diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180

    Article  CAS  PubMed  Google Scholar 

  • Miralpeix B, Rischer H, Hakkinen ST et al (2013) Metabolic engineering of plant secondary products: which way forward? Curr Pharm Des 19:5622–5639

    Article  CAS  PubMed  Google Scholar 

  • Moyano E, Fornale S, Palazon J et al (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702

    Article  CAS  PubMed  Google Scholar 

  • Muir SR, Collins GJ, Robinson S et al (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  PubMed  Google Scholar 

  • Nafis T, Akmal M, Mauji R et al (2010) Enhancement of artemisinin content by constitutive expression of HMG CoA Reductase gene in high yielding strain of Artemisia annua L. plant. Biotechnol Rep 5:53–60

    Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson ME, Olofsson LM, Lindahl A-L et al (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Palazón J, Navarro-Ocaña A, Hernandez-Vazquez L et al (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13:1722–1742

    Article  PubMed  Google Scholar 

  • Rao A, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  PubMed  Google Scholar 

  • Ravanello MP, Ke D, Alvarez J et al (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263

    Article  CAS  PubMed  Google Scholar 

  • Rydén A-M, Ruyter-Spira C, Quax WJ et al (2010) The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua. Planta Med 76:1778

    Article  PubMed  Google Scholar 

  • Sa G, Ma M, Ye HC et al (2001) Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci 160:691–698

    Google Scholar 

  • Sato F, Inui T, Takemura T (2007) Metabolic engineering in isoquinoline alkaloid biosynthesis. Curr Pharm Biotechnol 8:211–218

    Article  CAS  PubMed  Google Scholar 

  • Sommer A (2008) Vitamin A deficiency and clinical disease: an historical overview. J Nutr 138:1835–1839

    CAS  PubMed  Google Scholar 

  • Suffness M (1993) Taxol: from discovery to therapeutic use. Annu Rep Med Chem 28:305–314

    Article  CAS  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW et al (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada-Plant Biotechnology Institute. Botany 87:635–642

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallaart TE, Bouwmeester HJ, Hille J et al (2001) Amorpha-4, 11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Song Y, Shen H et al (2012) Effect of antisense squalene synthase gene expression on the increase of artemisinin content in Artemisa annua. In: Ciftci YO (ed) Transgenic plants- advances and limitations, PhD. In Tech, doi:10.5772/31718

    Google Scholar 

  • Weber W, Fussenegger M (2011) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    Article  PubMed  Google Scholar 

  • World Health Organization (2008) World malaria report 2008. World Health Organization

    Google Scholar 

  • Zhang L, Ding R, Chai Y et al (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U S A 101:6786–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Teoh KH, Reed DW et al (2008) The molecular cloning of artemisinic aldehyde Δ11 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Sanahuja G, Yuan D et al (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129–141

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen MD, Moor A, Weber W (2012) Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy. J Biotechnol 160:80–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project fellowship award to Usha Kiran under UGC Major project and Fellowship awarded to Athar Ali under UGC-SAP programme, Government of India, is gratefully acknowledged. Assistance in manuscript preparation from Mr. Naved Quadri, CTPD, Jamia Hamdard, New Delhi 110062, is also acknowledged by authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Zainul Abdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kiran, U., Ali, A., Kamaluddin, Abdin, M.Z. (2017). Metabolic Engineering of Secondary Plant Metabolism. In: Abdin, M., Kiran, U., Kamaluddin, Ali, A. (eds) Plant Biotechnology: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-2961-5_6

Download citation

Publish with us

Policies and ethics