Skip to main content

Urban Soil’s Functions: Monitoring, Assessment, and Management

  • Chapter
  • First Online:
Adaptive Soil Management : From Theory to Practices

Abstract

Urbanization is a key trend of current land-use change, responsible for large environmental changes worldwide. Sustainable functioning of urban ecosystems is a priority goal of today and nearest future. Urban soil is a key component of urban ecosystems. Urban soils are formed and exist under predominant direct and indirect effect of anthropogenic factor. Urbanization was traditionally related to negative impacts on soils, whereas the capacity of urban soils to perform environmental functions is poorly understood. Traditional approaches to assess and standardize soil quality through static parameters and health thresholds give limited information on soil living phase and its dynamics. Quantifying urban soils’ functions directly relates soil quality to the role of soil for environment and society, that is especially relevant in urban ecosystems. This chapter aims to overview existing approaches to monitor and assess soil functions for a specific case of urban soils. Individual functions (i.e., gas exchange and carbon sequestration, bioresources, remediation, etc.) are observed over variety of bioclimatic conditions and for different levels of anthropogenic disturbance. Assessment results are further implemented to develop guidelines and best management practices to construct and treat urban soils for maintaining their functions and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–31

    Article  CAS  Google Scholar 

  • Ali AMS (2003) Farmer’s knowledge of soils and the sustainability of agriculture in a saline water ecosystem in Southwestern Bangladesh. Geoderma 111:333–353

    Article  Google Scholar 

  • Ananyeva ND (2003) Microbiological aspects of soil self-purification and stability. Nauka, Moscow [in Russian]

    Google Scholar 

  • Ananyeva ND, Susyan EA, Chernova V, Wirth S (2008) Microbial respiration activities of soils from different climatic regions of European Russia. Eur J Soil Biol 44:147–157

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson T-H, Domsch KH (1986) Carbon link between microbial biomass and soil organic matter. In: Megusar F, Gantar M (eds) Proceedings of the fourth international symposium on microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 467–471

    Google Scholar 

  • Anderson T-H, Domsch KH (1989) Ratio of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson T-H, Gray TRG (1989) Soil microbial carbon uptake characteristics in relation to soil management. FEMS Microbiol Ecol 74:11–20

    Article  Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68(6):1945–1962

    Article  CAS  Google Scholar 

  • Andrews SS, Carroll CR (2001) Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol Appl 11:1573–1585

    Article  Google Scholar 

  • Aparin BF (2007) Red book of soils of Leningradskaya Oblast. Regional Government of the Leningradskaya Oblast, Saint Petersburg

    Google Scholar 

  • Arinushkina EV (1970) Handbook of soil chemical analyses. Moscow State University Press, Moscow [in Russian]

    Google Scholar 

  • Arshad MA, Martin S (2002) Identifying critical limits for soil quality indicators in agro-ecosystems. Agric Ecosyst Environ 88:153–160

    Article  Google Scholar 

  • Bailey VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial biomass ratios in soils investigated for enhanced carbon sequestration. Soil Biol Biochem 34:997–1007

    Article  CAS  Google Scholar 

  • Bandaranayake W, Qian YL, Parton WJ, Ojima DS, Follett RF (2003) Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model. Agron J 95:558–563

    Article  Google Scholar 

  • Barajas-Aceves M (2005) Comparison of different microbial biomass and activity measurement methods in metal contaminated soils. Bioresour Technol 9:1405–1414

    Article  CAS  Google Scholar 

  • Barrios E, Trejo MT (2003) Implications of local soil knowledge for integrated soil management in Latin America. Geoderma 111:217–231

    Article  Google Scholar 

  • Bastida F, Moreno JLA, Hernandez T, Garcia C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147:159–171

    Article  CAS  Google Scholar 

  • BBodSchG–Bundes-Bodenschutzgesetz-German Federal Soil Protection Act, published 17 March 1998

    Google Scholar 

  • Bekku Y, Koizumi H, Oikawa T, Iwaki H (1997) Examination of four methods for measuring soil respiration. Appl Soil Ecol 5:247–254

    Article  Google Scholar 

  • Benedetti A, Dilly O (2006) Approaches to defining, monitoring, evaluating and managing soil quality. In: Bloem J, Benedetti A, Hopkins DW (eds) Microbiological methods for assessing soil quality. CABI, Wallingford, Oxfordshire, pp 3–14

    Google Scholar 

  • Berry BJL (2008) Urbanization. In: Marzluff et al (eds) Urban ecology. An international perspective between humans and nature. Springer, New York, NY, pp 25–48

    Google Scholar 

  • Beyer L, Blume HP, Elsner DC (1995) Soil organic matter composition and microbial activity in urban soils. Sci. Total Environ 168:267–278

    Article  CAS  Google Scholar 

  • Bezdicek DF, Papendic RI, Lal R (1996) Introduction: importance of soil quality to health and sustainable land management. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Madison, WI, pp 1–8

    Google Scholar 

  • Bloem J, Breure AM (2003) Microbial indicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 259–282

    Google Scholar 

  • Blum WEH (2005) Functions of soil for society and environment. Rev Environ Sci Biotechnol 4:75–79

    Article  Google Scholar 

  • Bogoev VM, Gilmanov TG (1982) Abundance and biomass of microorganisms in soils of some zonal ecosystems. Biologicheskienauki 7:80–83 [in Russian]

    Google Scholar 

  • Bölter M, Bloem J, Meiners K, Möller R (2002) Enumiration and biovolume determination of microbial cells—a methodological review and recommendations for applications in ecological research. Biol Fertil Soils 35:249–259

    Google Scholar 

  • Bond-Lambert B, Bronson D, Bladyka E, Gower ST (2011) A comparison of trenched plot techniques for partitioning soil respiration. Soil Biol Biochem 43:2108–2114

    Article  CAS  Google Scholar 

  • Bond-Lamberty A, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915–1926

    Article  CAS  Google Scholar 

  • Breure AM, De Deyn GB, Dominati E, Eglin T, Hedlund K, Van Orshoven J, Posthuma L (2012) Ecosystem services: a useful concept for soil policy making! Curr Opin Environ Sustain 4(5):578–585

    Article  Google Scholar 

  • Brown AL (2003) Increasing the utility of urban environmental quality information. Landsc Urban Plan 65:85–93

    Article  Google Scholar 

  • Burghardt W (1994) Soils in urban and industrial environments. Z Pflanzenernahr Badenkd 157:205–214

    Article  CAS  Google Scholar 

  • Burghardt W (2000) The German double track concept of classifying soils by their substrate and their anthropo-natural genesis: the adaptation to urban areas. In: Proceedings of first international conference. SUITMA, Essen, pp 217–222

    Google Scholar 

  • Buyanovsky GA, Wagner GH, Gantzer CJ (1986) Soil respiration in a winter wheat ecosystem. Soil Sci Soc Am J 50:338–344

    Article  Google Scholar 

  • Castaldi S, Rutigliano FA, Virzo de Santo A (2004) Suitability of soil microbial parameters as indicators of heavy metal pollution. Water Air Soil Pollut 158:21–35

    Article  CAS  Google Scholar 

  • Cook KA, Greaves MP (1987) Natural variability in microbial activities. In: Somerville L, Greaves MP (eds) Pestiside effects on soil microflora. Taylor & Francis, New York, NY, pp 15–43

    Google Scholar 

  • Costanza R, d’Are R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RS, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • CP-11-102-97. Code of practice. Engineering environmental site investigation for construction. 15 August 1997

    Google Scholar 

  • Craul PJ (1992) Urban soils in landscape design. Wiley, New York, NY

    Google Scholar 

  • Creamer RE, Schulte RPO, Stone D, Gal A, Krogh PH, Papa GL, Murray PJ, Peres G, Foerster B, Rutgers M, Sousa JP, Winding A (2014) Measuring basal soil respiration across Europe: do incubation temperature and incubation period matter? Ecol Indic 36:409–418

    Article  Google Scholar 

  • Da Costa Duarte A, Oliveira Duarte RMB (2009) Natural organic matter in atmospheric particles. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, New York, NY, pp 451–485

    Chapter  Google Scholar 

  • de Groot RS (1992) Functions of nature: evaluation of nature in environmental planning, management, and decision making. Wolters-Noordhoff, Groningen

    Google Scholar 

  • Denisov VV, Kurbatova AS, Denisova IA, Bondarenko VL, Gracheva VA, Gutenev VV, Nagnibeda BA (2008) Ecology of a city. Rostov on Don, Moscow [in Russian]

    Google Scholar 

  • Dilly O (2001) Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem 33:117–127

    Article  CAS  Google Scholar 

  • DIN ISO 14240-1. Soil quality–determination of soil microbial biomass. Part 1: substrate-induced respiration method. Beuth, Berlin-Wien-Zürich, 1997

    Google Scholar 

  • Dobrovolskii GV, Nikitin ED (1990) Soils functions in biosphere and ecosystems. Nauka, Moscow [in Russian]

    Google Scholar 

  • Dobrovolskii GV, Nikitin ED, Karpachevskii LO (2001) New approaches to the concept of soil place in the biosphere. Eurasian Soil Sci 34:1

    Google Scholar 

  • Dobrovolskii GV, Nikitin ED (2006) Soil ecology. The doctrine of soils ecological functions. Nauka, Moscow [in Russian]

    Google Scholar 

  • Dobrovolskii GV, Nikitin ED (eds) (2009) Red book of soils of Russia. Moscow University, Moscow

    Google Scholar 

  • Dobrovolskii GV, Nikitin ED (2012) Soil ecology. Moscow University, Moscow

    Google Scholar 

  • Dobrovolsky GV, Urussevskaya IS (2004) Soil geography. Moscow University, Moscow [in Russian]

    Google Scholar 

  • Dolgikh AV, Aleksandrovskii AL (2010) Soils and cultural layers in Velikii Novgorod. Eurasian Soil Sci 43:477–448

    Article  Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127

    Article  Google Scholar 

  • EPA. Lead in Oakland soils, fact sheet. EPA Region 9. www.epa.gov/region9

  • Erkossa T, Itanna F, Stahr K (2007) Indexing soil quality: a new paradigm in soil science research. Aust J Soil Res 45:129–137

    Article  Google Scholar 

  • Fedoroff N (1987) The production potential of soils. Part 1. Sensitivity of principal soil types to the intense agriculture of north-western Europe. In: Barth E, L’Hermite P (eds) Scientific basis for soil protection in the European community. Elsevier, London, pp 65–86

    Chapter  Google Scholar 

  • Franzluebbers AJ, Zuberer DA, Hons FM (1995) Comparison of microbiological methods for evaluating quality and fertility of soil. Biol Fertil Soils 19:135–140

    Article  Google Scholar 

  • Gavrichkova O (2010) Drivers of soil respiration of root and microbial origin in grasslands. Doctorate thesis, Tuscia University, Viterbo

    Google Scholar 

  • Gavrilenko EG, Susyan EA, Anan’eva ND, Makarov OA (2011) Spatial variability in the carbon of microbial biomass and microbial respiration in soils of the south of Moscow oblast. Eurasian Soil Sci 44:1125–1138

    Article  CAS  Google Scholar 

  • Gavrilenko EG, Ananyeva ND, Makarov OA (2013) Assessment of soil quality in different ecosystems (with soils of Podolsk and Serpukhov districts of Moscow oblast as examples). Eurasian Soil Sci 46:1241–1252

    Article  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leiro MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gorbov SN, Bezuglova OS (2013) Biological activity of urban soils (on the example of Rostov-on-Don). Sci J KubGAU 85:1–15 [in Russian]

    Google Scholar 

  • Gugino BK, Idowu OJ, Schindelbeck RR, van Es HM, Wolfe DW, Moebius-Clune BN, Thies JE, Abawi GS (2009) Cornell soil health assessment training manual, 2.0 edn. Cornell University, Geneva, NY

    Google Scholar 

  • Guo XL, Black SC, He YH (2011) Estimation of leaf CO2 exchange rates using a SPOT image. Int J Remote Sens 32:353–366

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Hargreaves PR, Brookes PC, Ross GJS, Poulton PR (2003) Evaluating soil microbial biomass carbon as an indicator of long-term environmental change. Soil Biol Biochem 35:401–407

    Article  CAS  Google Scholar 

  • Höper H, Kleefisch B (2001) Untersuchung bodenbiologicher parameter im rahmen der boden-dauerbeobachtung in niedersachsen. Bodenbiologische Referenzwerte und Zeitreihen. Niedersächsischen Landesamt für Bodenforschung, Hannover

    Google Scholar 

  • HS-2.1.7.2041-06. Hygienic standards. Threshold limit values (TLV) of chemical substance in soil. 23 January 2006

    Google Scholar 

  • Huang N, He JS, Niu Z (2013) Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol Indic 26:117–125

    Article  Google Scholar 

  • Insam H, Hutchinson TC, Reber HH (1996) Effects of heavy metal stress on the metabolic quotient of soil microflora. Soil Biol Biochem 28:691–694

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001: the scientific basis In: Contribution of working group i to the third assessment report of the intergovernmental panel on climate change (eds JT Houghton, Y Ding, DJ Griggs, ea) Cambridge: Cambridge University Press.

    Google Scholar 

  • ISO (International Organization for Standardization) (2002a) Soil quality: laboratory methods for determination of microbial soil respiration. ISO 16072:2002

    Google Scholar 

  • ISO (International Organization for Standardization) (2002b) Soil quality: determination of abundance and activity of soil microflora using respiration curves. ISO 17155:2002

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104:399–417

    Article  CAS  Google Scholar 

  • Jenkinson DS (1977) The soil biomass. New Zealand Soil News 25:213–218

    Google Scholar 

  • Jo H-K, McPherson GE (1995) Carbon storage and flux in urban residential greenspace. J Environ Manag 45:109–133

    Article  Google Scholar 

  • Jordan D, Kremer RJ, Bergfield WA, Kim KY, Cacnio VN (1995) Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol Fertil Soils 19:297–302

    Article  Google Scholar 

  • Kachan AS, Rybalsky NG, Samotesova ED, Barsova AR (2007) Report on the state of natural resources of Moscow Region in 2006. NIA-Priroda, Moscow

    Google Scholar 

  • Kang GS, Beri V, Sidhu BS, Rupela OP (2005) A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol Fertil Soils 41:389–398

    Article  Google Scholar 

  • Karlen DL, Andrews SS, Doran JW (2001) Soil quality: current concepts and applications. Adv Agron 74:1–40

    Article  CAS  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Karmanov II (1989) Scientific basis and technique of price calculation for soil and land use. Vestik Selskohozyastvennoi Nauki 3:3–9 [in Russian]

    Google Scholar 

  • Karmanov II (1991b) The prices issue of soil and land. In: Tereticheskie osnovi i puti regulirovaniya plodorodiya pochv. Agropromizdat, Moscow [in Russian], pp 234–297

    Google Scholar 

  • Karmanov II, Bulgakov DS, Karmanova LA, Putilin EI (2002) Modern aspects of the assessment of land quality and soil fertility. Eurasian Soil Sci 35:754–760

    Google Scholar 

  • Kaye JP, McCulley RL, Burkez IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587

    Article  Google Scholar 

  • Kazeev KSh,Kolesnicov SI, Val’kov VF (2003) Biological diagnosis and indication of soil: methodology and research methods. Rostov-on-Don [in Russian]

    Google Scholar 

  • Knoepp JD, Coleman DC, Crossley DA, Clark JS (2000) Biological indices of soil quality: an ecosystem case study of their use. For Ecol Manage 138:357–368

    Article  Google Scholar 

  • Kolesnokov SI, Kazeev VSh, Val’kov VF (2001) Biological monitoring and principles of soil pollution standard. Rostov-on-Don [in Russian]

    Google Scholar 

  • Korchagina KV, Smagin AV, Reshetina TV (2014) Assessing the technogenic contamination of urban soils from the profile. Eurasian Soil Sci 47(8):824–833

    Google Scholar 

  • Kovda VA, Rozanov BG (eds) (1988) Soil science. V. Shkola, Moscow

    Google Scholar 

  • Kovda VA (1973) Soil cover as a component of biosphere. Vestn Russ Acad Sci 9:16 [in Russian]

    Google Scholar 

  • Kovda VA (1975) Biosphere, soils and their use. Soviet Soil Sci 1:9 [in Russian]

    Google Scholar 

  • Kovda VA (1981) Disarmanent and preservation of the biosphere. Environ Conserv 4:258–260

    Article  Google Scholar 

  • Kurbatova AS, Bashkin VN, Barannikova Y et al (2004) Ecological functions of urban soils. Smolensk, Moscow [in Russian]

    Google Scholar 

  • Lal R (2004) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosyst 70:103–116

    Article  CAS  Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic, New York, NY

    Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Li X, Poon CS, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368

    Article  CAS  Google Scholar 

  • Liao M, Xiaomei X, Aili M, Ying P (2010) Different influences of cadmium on soil microbial activity and structure with Chinese cabbage cultivated and non-cultivated soils. J Soils Sediments 10:818–826

    Article  CAS  Google Scholar 

  • Lorenz K, Kandeler E (2006) Microbial biomass and activities in urban soils in two consecutive years. J Plant Nutr Soil Sci 169:799–808

    Article  CAS  Google Scholar 

  • Lorenz K, Kandeler E (2005) Biochemical characterization of urban soil profiles from Stuttgart. Germany Soil Biol Biochem 37:1373–1385

    Article  CAS  Google Scholar 

  • MA–Millennium Ecosystem Assessment (2003) Ecosystems and human well-being: a framework for assessment. Island Press, Washington, DC

    Google Scholar 

  • Mairura FS, Mugendi DN, Mwanje JL, Ramisch JJ, Mbugua PK, Chianu JN (2007) Integrating scientific and farmer’ evaluation of soil quality indicators in Central Kenya. Geoderma 139:134–143

    Article  CAS  Google Scholar 

  • Makarov OA (2003) Why is necessity of soil assessment? (Soil status/quality: assessment, regulation, management, certification). Moscow State University Press, Moscow [in Russian]

    Google Scholar 

  • Makarov OA, Kamanina IZ (2008) Economic evaluation and certification for soils and lands. MAKS Press, Moscow [in Russian]

    Google Scholar 

  • Martin JG, Bolstad PV (2009) Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape. Soil Biol Biochem 41:530–543

    Article  CAS  Google Scholar 

  • Matei GM, Matei S, Breabăn IG, Lăcătuşu R (2006) Microbial characteristics of urban soils from Iassy Municipium. Soil forming factors and processes from the temperate zone 5:63–71. doi:10.15551/fppzt.v5i1.293

  • McBride MB (2013). Arsenic and lead uptake by vegetable crops grown on historically contaminated orchard soils. Appl Environ Soil Sci. 2013, 283472, 8pp

    Article  CAS  Google Scholar 

  • MD-2.1.7.730-99. Methodical directions. Hygienic evaluation of soil in residential areas, 7 February 1999

    Google Scholar 

  • Milesi C, Running SW (2005) Mapping and modelling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36:426–438

    Article  Google Scholar 

  • Mitchell RG, Spliethoff HM, Ribaudo LN, Lopp DM, Shayler HA, Marquez-Bravo LG, Lambert VT, Ferenz GS, Russell-Anelli JM, Stone EB, McBride MB (2014) Lead (Pb) and other metals in New York city community garden soils: factors influencing contaminant distributions. Environ Pollut 187:162–169

    Article  CAS  Google Scholar 

  • Miyamoto Y, Saito Y, Magara M, Usuda S (2003) Determination of elemental composition of airborne dust and dust suspended in rain. J Radioanal Nucl Chem 255(3):553–557

    Article  CAS  Google Scholar 

  • Morel JL, Chenu C, Lorenz K (2014) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J Soils Sediments 15:1659–1666

    Article  Google Scholar 

  • Morris SJ, Boerner REJ (1999) Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: scale dependency and landscape patterns. Soil Biol Biochem 31:887–902

    Article  CAS  Google Scholar 

  • Müller N, Ignatieva M, Nilon CH, Werne RP, Zipperer WC (2013) Patterns and trends in urban biodiversityand landscape design. In: Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer Dordrecht Heidelberg, New York/London, pp 123–174

    Chapter  Google Scholar 

  • Nakadai T, Koizumi H, Usami Y, Satoh M, Oikawa T (1993) Examination of the methods for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration. Ecol Res 8:65–71

    Article  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the Environment. Marcel Dekker, New York, NY, pp 1–34

    Google Scholar 

  • Nortcliff S (2002) Standartization of soil quality attributed. Agric Ecosyst Environ 88:161–168

    Article  Google Scholar 

  • Nwachukwu OI, Pulford ID (2011) Microbial respiration as an indication of metal toxicity in contaminated organic materials and soil. J Hazard Mater 185:1140–1147

    Article  CAS  Google Scholar 

  • Oke TR (1973) City size and the urban heat island effect. Atmos Environ 7:769–779

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates. Methuen, London

    Google Scholar 

  • Osipov, V.I., Medvedev, O.P. (ed.) (1997) Moscow: geology and city. Moscow: AO “Moscovskie uchebniky I Kartolitographia” [in Russian]

    Google Scholar 

  • Pankhurst CE, Hawke BG, McDonald HJ, Kirkby CA, Buckerfieid JC, Michelsen P, O’Brien KA, Gupta VVSR, Doube BM (1995) Evaluation of soil biological properties as potential bioindicators of soil health. Aust J Exp Agri 35:1015–1028

    Article  Google Scholar 

  • Papa S, Bartoli G, Pellegrino A, Fioretto A (2010) Microbial activities and trace element contents in an urban soil. Environ Monit Assess 165:193–203

    Article  CAS  Google Scholar 

  • Parkin TB (1993) Spatial variability of microbial processes in soil—a review. Environ Qual 22:409–417

    Article  Google Scholar 

  • Paz-Alberto AM, Gilbert C, Sigua (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Chang 2:71–86

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362

    Article  CAS  Google Scholar 

  • Plyaskina OV (2007) Peculiarities of pollution by heavy metals of urban soils of Southeastern Administrative District of Moscow. Extended Abstract of Cand Sci (Biol) Dissertation, Moscow [in Russian]

    Google Scholar 

  • Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35:566–575

    Article  CAS  Google Scholar 

  • Powlson DS (1994) The soil microbial biomass: before, beyond and back. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass–compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 3–20

    Google Scholar 

  • Prokof’eva TV, Gerasimova MI, Bezuglova OS et al (2014) Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system. Eurasian Soil Sci 47:959–967

    Article  Google Scholar 

  • Prokof’eva TV, Shishkov VA, Kiryushin AV, Kalushin IY (2015) Properties of atmospheric solid fallouts in roadside areas of Moscow. Izv RAN Ser Geographicheskaya 3:107–120 [in Russian]

    Google Scholar 

  • Prokof’eva TV, Sedov SN, Kazdym AA (2007) Sources, composition and conditions of clay material formation in urban soils. Bull Pochvennogo In-ta imeny VV Dokuchaeva 60:41–55

    Google Scholar 

  • Prokof’eva T, Gerasimova M, Lebedeva I, Martynenko I (2013) An attempt of integrating the systematic of urban soils into the new Russian soil classification system. Soil Sci Annu 64(1):24–28

    Google Scholar 

  • Prokofieva TV, Stroganova MN (2004) Soils of Moscow city (soils in urban environment, their specifics and environmental significance). Moscow Biological (GEOS), Moscow [in Russian]

    Google Scholar 

  • Prokofyeva TV, Martynenko IA, Ivannikov FA (2011) Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils. Eurasian Soil Sci 44(5):561–571

    Article  Google Scholar 

  • Raciti SM, Groffman PM, Fahey TJ (2008) Nitrogen retention in urban lawns and forests. Ecol Appl 1:1615–1626

    Article  Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global respiration, 1980–1994. Glob Chang Biol 8:800–812

    Article  Google Scholar 

  • Ritz K, Black HIJ, Campbell CD, Harrisa JA, Wood C (2009) Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol Indic 9:1212–1221

    Article  CAS  Google Scholar 

  • Ross DJ, Tate KR (1993) Microbial C and N, and respiratory activity, in litter and soil of a southern beech (Nothofagus) forest: distribution and properties. Soil Biol Biochem 25:477–483

    Article  Google Scholar 

  • Rossiter DG (2007) Classification of urban and industrial soils in the World Reference Base for soil resources. J Soils Sediment 7:96–100

    Article  CAS  Google Scholar 

  • Saetre P (1999) Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography 22:183–192

    Article  Google Scholar 

  • Savage KE, Davidson EA (2003) A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. J Exp Bot 54:891–899

    Article  CAS  Google Scholar 

  • Savich VI, Amergudgin HA, Karmanov II et al (2003) Soil assessment [in Russian]. Dauir-Kitap, Astana

    Google Scholar 

  • Schouten AJ, Bloem J, Didden WA, Rutgers M, Siepel H, Posthuma L, Breure AM (2000) Development of a biological indicator for soil quality. SETAC Globe 1:30–33

    Google Scholar 

  • Schulze ED (2006) Biological control of the terrestrial carbon sink. Biogeosciences 2:147–166

    Article  Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 194:224–234

    Article  Google Scholar 

  • Sharkova SU, Parfenova EA, Polyanskaya EA(2011) Bioindication urban environment by soil microbial component status. Ecology and industry of Russia, November, pp 44–47 [in Russian]

    Google Scholar 

  • Shishov LL, Voinovich NV (eds) (2002) Soils of Moscow Region and their use. Dokuchaev Soil Science Institute, Moscow

    Google Scholar 

  • Shimanuk AP (1974) Dendrology. Lesnaya Promishlennost’ Press, Moscow [in Russian]

    Google Scholar 

  • Shirokikh IG, Ashikhmina TY, Shirokikh AA (2011) Specificity of actinomycetal complexes in urbanozems of the city of Kirov. Eurasian Soil Sci 44:180–185

    Article  Google Scholar 

  • Shumilova LP, Kuimova NG (2013) Chromatography-mass spectrometry method. Bulletin 50:121–125 [in Russian]

    Google Scholar 

  • Šimůnek J, Šejna M, van Genuchten MT (1998) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably- saturated media. In: IGWMC–TPS–70. Golden, CO, International Ground Water Modeling Center, Colorado School of Mines, 186p

    Google Scholar 

  • Šimůnek J, van Genuchten MTh, Šejna M (2006) The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, Version 1.0, PC Progress, Prague, Czech Republic, 241р

    Google Scholar 

  • Smagin AV (2000) The gas function of soils. Eurasian Soil Sci 33(10):1211–1223

    Google Scholar 

  • Smagin AV (2003) Theory and methods оf evaluating the physical status оf soils. Eurasian Soil Sci 36(3):301–312

    Google Scholar 

  • Smagin AV (2006) Arid soils reclaimed. Sci Russ 6:53–58

    Google Scholar 

  • Smagin AV, Shoba SA, Kinjaev RR et al (2005) In: Manama M (ed) AridGrow–ideal soil system. MSU Press, 144p

    Google Scholar 

  • Smagin AV (2005) The gas phase of soils. Moscow State University Press, Moscow, 301p [in Russian]

    Google Scholar 

  • Smagin AV (2012) Theory and practice of soil engeneering. Moscow State University Press, Moscow 544p [in Russian]

    Google Scholar 

  • Smagin AV, Sadovnikova NB (2015) Creation of soil-like constructions. Eurasian Soil Sci 48(9):981–990

    Article  Google Scholar 

  • Smagin AV, Azovtseva NA, Smagina MV et al (2006) Criteria and methods to assess the ecological status of soils in relation to the landscaping of urban territories. Eurasian Soil Sci. 39(5):339–551. doi:10.1134/S1064229306050115

    Article  Google Scholar 

  • Smagin AV, Shoba SA, Makarov OA (2008) Ecological assessment of soil resources and technology their reproduction (Moscow city). Moscow State University Press, Moscow [in Russian]

    Google Scholar 

  • Sparling GP, Schipper LA, Bettjeman W, Hill R (2004) Soil quality monitoring in New Zealand: practical lessons from a 6-year trial. Agric Ecol Environ 104:523–534

    Article  Google Scholar 

  • Stroganova MN, Miagkova AD, Prokofieva TV, Skvortsova IN (1998) Soils of Moscow and urban environment. PAIMS, Moscow

    Google Scholar 

  • Swift S (2011) Sequestration of carbon by soil. Soil Sci 166:858–871

    Article  Google Scholar 

  • Taneva L, Gonzalez-Meler M (2011) Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment. Biogeosciences 8(10):3077–3092

    Article  CAS  Google Scholar 

  • TEEB (2010) The economics of ecosystems and biodiversity. Mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. Progress Press, Malta

    Google Scholar 

  • Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1998) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106

    Article  CAS  Google Scholar 

  • NRCS USDA (2005) Urban soil primer

    Google Scholar 

  • Vasenev II, Bukreyev DA (1994) A method for assessing soil-cover quality in ecosystems. Eurasian Soil Sci 26(6):124–129

    Google Scholar 

  • Vasenev VI (2011) Analyzing carbon pools and microbial respiration for functional-environmental assessment of urban constructed soils in Moscow Region. Candidate dissertation, Moscow State University, Moscow

    Google Scholar 

  • Vasenev VI, Ananyeva ND, Makarov OA (2012) Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast. Eurasian Soil Sci 45:194–205

    Article  CAS  Google Scholar 

  • Vasenev VI, Stoorvogel JJ, Vasenev II (2013a) Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow Region. Catena 107:96–102

    Google Scholar 

  • Vasenev VI, Prokofieva TV, Makarov OA (2013b) Development of the approach to assess soil organic carbon stocks in megapolis and small settlement. Eurasian Soil Sci 6:1–12

    Google Scholar 

  • Vasenev VI, Stoorvogel JJ, Ananyeva ND, Ivashchenko KV, Sarzhanov DA, Epikhina AS, Vasenev II, Valentini R (2015) Quantifying spatial-temporal variability of carbon stocks and fluxes in urban soils: from local monitoring to regional modelling. In: Muthu SS (ed) The carbon footprint handbook. CRC, Boca Raton, FL, pp 185–222

    Chapter  Google Scholar 

  • Vasenev VI, Stoorvogel JJ, Vasenev II, Valentini R (2014a) How to map soil organic stocks in highly urbanized region? Geoderma 226–227:103–115

    Article  CAS  Google Scholar 

  • Vorobyova LA (1998) Soil chemical analysis. MSU, Moscow

    Google Scholar 

  • Vrscaj B, Poggio L, Marsan F (2008) A method for soil environmental quality evaluation for management and planning in urban areas. Landsc Urban Plan 88:81–94

    Article  Google Scholar 

  • Walley FL, Van Kessel C, Pennock DJ (1996) Landscape-scale variability of N mineralization in forest soils. Soil Biol Biochem 28:383–391

    Article  CAS  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Article  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Safety 62:230–248

    Article  CAS  Google Scholar 

  • World Reference Base for Soil Resources (2014) World soil resources reports, 106. FAO UNESCO, Rome

    Google Scholar 

  • Yakovlev AS, Evdokimova MV (2011) Ecological standardization of soil and soil quality control. Eurasian Soil Sci 44:534–546

    Article  Google Scholar 

  • Yan T, Yang L, Campbell CD (2003) Microbial biomass and metabolic quotient of soils under different land use in the Three Gorges Reservoir area. Geoderma 115:129–138

    Article  Google Scholar 

  • Yazikov EG, Goleva RV, Rikhvanov LP et al (2004) Mineral composition of dust-aerosol snow precipitations in Tomsk agroindustrial agglomeration. Zapisky Vsesoyuznogo Mineralogicheskogo Obshchestvava 5:69–78 [in Russian]

    Google Scholar 

  • Yuangen Y, Campbell CD, Clark L, Cameron CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 63:1942–1952

    Article  CAS  Google Scholar 

  • Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, Vose J, Milchunas D, Martin CW (1994) Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecology 75:2333–2347

    Article  Google Scholar 

  • Zavarzin GA (1994) Microbial biogeography. Z Obshei Biol 1:5–12 [in Russian]

    Google Scholar 

  • Zhao D, Li F, Yang Q, Wang R, Song Y, Tao Y (2013) The influence of different types of urban land use on soil microbial biomass and functional diversity in Beijing, China. Soil Use Manag 29:230–239

    Article  CAS  Google Scholar 

  • Zornova R, Mataiz-Solera J, Guerrero C, Arcenegui V, Garcia-Orenes F, Mataix-Beneyto J, Morugan A (2007) Evaluation of soil quality using multiple linear regression based on physical, chemical and biochemical properties. Sci Total Environ 378:233–237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was partly supported by the Russian Foundation for Basic Research, Projects Nos. 15-34-70003, 15-04-00915 and 15-54-53117 and the Russian Science Foundation Project No 16-16-04014. The authors thank Anna Shchepeleva, Dmitry Sarzhanov, Julia Sotnikova, and Ilia Mazirov for providing the field data, Sara Perl Egendorf and Sofia Rogovaya for the assistance in editing, and Prof. Ivan Vasenev for valuable suggestions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasenev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vasenev, V.I. et al. (2017). Urban Soil’s Functions: Monitoring, Assessment, and Management. In: Rakshit, A., Abhilash, P., Singh, H., Ghosh, S. (eds) Adaptive Soil Management : From Theory to Practices. Springer, Singapore. https://doi.org/10.1007/978-981-10-3638-5_18

Download citation

Publish with us

Policies and ethics