Skip to main content

Designing Bioactive Scaffolds for Dental Tissue Engineering

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Research in dentistry has aggressively moved into regenerative approaches in order to achieve improved clinical outcomes. Tissue engineering has been adopted in dental and craniofacial tissue regeneration with significant success. This article reviews the state of the art in tissue engineering across dentistry, particularly in areas like endodontics, periodontics, and orthodontics. The basic tenets of tissue engineering, i.e., incorporating cells and signaling molecules into a specially designed scaffold, could be applied to regenerate defective dental tissues as well. The main challenge here is that the tissues constituting the tooth and supporting structures have a highly intricate architecture, with each tissue having a specific function. Regeneration of pulp, dentine, periodontal ligament, and alveolar bone has been individually demonstrated; but the collective regrowth of composite tissue structures is still elusive. Ambitious projects like growing the whole tooth and generating complete periodontium are in progress. This article emphasizes the futuristic role of tissue engineering in oral rehabilitation. The article also includes the efforts of an Indian team to design and develop bioactive scaffolds for dental tissue regeneration. Such ventures of effective translation of research become successful only through the combined efforts of material researchers, product designers, clinicians and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BCP:

Biphasic calcium phosphate

CPC:

Calcium phosphate cement

CSF:

Cell sheet fragments

CSP:

Cell sheet pellets

ECM:

Extracellular matrix

EMDs:

Enamel matrix derivatives

GTR:

Guided tissue regeneration

MCS:

Monolayered cell sheets

MLS:

Multilayered cell sheets

PAOO:

Periodontal accelerated osteogenic orthodontics

PDL:

Periodontal ligament

PEG-PLGA:

Polyethylene glycol polylactic-polyglycolic acid

RADMSCs:

Rabbit adipose-derived mesenchymal stem cells

TCP:

Tricalcium phosphate

References

  1. Bendrea A-D, CiangaL CI. Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl. 2011;26:3–84.

    Article  CAS  PubMed  Google Scholar 

  2. Lanza RP, Langer R, Vacanti JP, editors. Principles of tissue engineering. 3rd ed. New York: Elsevier Academic Press; 2007.

    Google Scholar 

  3. Nerem R. The challenge of imitating nature. In: Lanza RP, Langer R, Vacanti JP, editors. Principles of tissue engineering, vol. 2. San Diego: Academic; 2000. p. 9–16.

    Chapter  Google Scholar 

  4. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18:241–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jakab K, Norotte C, Marga F, et al. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication. 2010;2:22001–15.

    Article  Google Scholar 

  6. James K, Levene H, Parsons JR, et al. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials. 1999;20:2203–12.

    Article  CAS  PubMed  Google Scholar 

  7. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60:24–34.

    Article  PubMed  Google Scholar 

  8. Moroni DW, Van Blitterswij CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed. 2008;19:543–72.

    Article  CAS  PubMed  Google Scholar 

  9. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  CAS  PubMed  Google Scholar 

  10. Scheller EL, Krebsbach P, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil. 2009;36:368–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414:118–21.

    Article  CAS  PubMed  Google Scholar 

  12. Hu B, Nadiri A, Kuchler-Bopp S, et al. Tissue engineering of tooth crown, root and periodontium. Tissue Eng. 2006;12:2069–75.

    Article  CAS  PubMed  Google Scholar 

  13. Dissanayaka WL, Hargreaves KM, Jin L, et al. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21:550.

    Article  CAS  PubMed  Google Scholar 

  14. Murray PE, Garcia-Godoy F. Chapter 5. In: Hargreaves KM, Goodis HE, Tay FR, editors. Seltzer and Bender’s dental pulp. 2nd ed. Hanover Park: Quintessence; 2012. p. 91–108.

    Google Scholar 

  15. Yang M. Regenerative endodontics: a new treatment modality for pulp regeneration. JSM Dent. 2013;1:10–1.

    Google Scholar 

  16. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.

    Article  CAS  PubMed  Google Scholar 

  17. Bansal R, Bansal R. Regenerative endodontics: a state of the art. Indian J Dent Res. 2011;22:122–31.

    Article  PubMed  Google Scholar 

  18. Shiehzadeh V, Aghmasheh F, Shiehzadeh F, et al. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: new method and three case reports. Indian J Dent Res. 2014;25:248–53.

    Article  PubMed  Google Scholar 

  19. Joshi N, Grinstaff M. Applications of dendrimers in tissue engineering. Curr Top Med Chem. 2008;8:1225–36.

    Article  PubMed  Google Scholar 

  20. Oliveira JM, Salgado AJ, Sousa N, et al. Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—a review. Prog Polym Sci. 2010;35:1163–94.

    Article  CAS  Google Scholar 

  21. Haridas V, Sharma YK, Creasey R, et al. Gelation and topochemical polymerization of peptide dendrimers. New J Chem. 2011;35:303–9.

    Article  CAS  Google Scholar 

  22. Haridas V, Sadanandan S, Collart-Dutilleul PY, et al. Lysine-appended polydiacetylene scaffolds for human mesenchymal stem cells. Biomacromolecules. 2014;15:582–90.

    Article  CAS  PubMed  Google Scholar 

  23. Komath M, Varma HK. Fully injectable calcium phosphate cement—a promise to dentistry. Indian J Dent Res. 2004;15:89–95.

    PubMed  Google Scholar 

  24. Jose B, Ratnakumari N, Mohanty M, et al. Calcium phosphate cement as an alternative for formocresol in primary teeth pulpotomies. Indian J Dent Res. 2013;24:522–5.

    Article  PubMed  Google Scholar 

  25. Brar GS, Toor RS. Dental stem cells: dentinogenic, osteogenic, and neurogenic differentiation and its clinical cell based therapies. Indian J Dent Res. 2012;23:393–7.

    Article  PubMed  Google Scholar 

  26. Sharma S, Sikri V, Sharma NK, et al. Regeneration of tooth pulp and dentin: trends and advances. Ann Neurosci. 2010;17:31–43.

    Article  CAS  Google Scholar 

  27. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontology 2000. 2006;40:11–28.

    Article  PubMed  Google Scholar 

  28. Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000. 1994;5:78–111.

    Article  CAS  PubMed  Google Scholar 

  29. Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28:703–21.

    Article  CAS  PubMed  Google Scholar 

  30. Melcher AH, et al. Ann R Coll Surg Engl. 1985;67:130–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McCulloch CA, Nemeth A, Lowenberg B, et al. Paravascular cells in endosteal spaces of alveolar bone contribute to periodontal ligament cell populations. Anat Rec. 1987;219:233–42.

    Article  CAS  PubMed  Google Scholar 

  32. Shalini H, Sankari D. Stem cells in periodontal regeneration. IOSR J Dent Med Sci. 2013;12:59–63.

    Article  Google Scholar 

  33. Hollinger JO, Hart CE, Hirsch SN, et al. Recombinant human platelet-derived growth factor: biology and clinical applications. Bone Joint Surg. 2008;90:48–54.

    Article  Google Scholar 

  34. Esposito M, Grusovin MG, Papanikolaou N, et al. Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev. 2009;4:CD003875.

    Google Scholar 

  35. Nakashima M, Reddi A. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025–32.

    Article  CAS  PubMed  Google Scholar 

  36. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008;2:81–96.

    Article  CAS  PubMed  Google Scholar 

  37. Kaukua N, Fried K, Mao JJ. Tissue engineering in orthodontic therapy. In: Krishnan V, Davidovitch Z, editors. Integrated clinical orthodontics. 1st ed. Oxford: Blackwell; 2012. p. 380–91.

    Google Scholar 

  38. Ohazama A, Modino SA, Miletich I, et al. Stem-cell-based tissue engineering of murine teeth. J Dent Res. 2004;83:518–22.

    Article  CAS  PubMed  Google Scholar 

  39. Xu WP, Zhang W, Asrican R, et al. Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A. 2008;14:549–57.

    Article  CAS  PubMed  Google Scholar 

  40. Abukawa H, Zhang W, Young CS, et al. Reconstructing mandibular defects using autologous tissue engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67:335–47.

    Article  PubMed  Google Scholar 

  41. Kim K, Lee CH, Kim BK, et al. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res. 2010;89:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Modino SA, Sharpe PT. Tissue engineering of teeth using adult stem cells. Arch Oral Biol. 2005;50:255–8.

    Article  PubMed  Google Scholar 

  43. Nakao K, Morita R, Saji Y, et al. The development of a bioengineered organ germ method. Nat Methods. 2007;4:227–30.

    Article  CAS  PubMed  Google Scholar 

  44. Maeda S, Ono Y, Nakamura K, et al. Molar uprighting with extrusion for implant site bone regeneration and improvement of the periodontal environment. Int J Periodontics Restorative Dent. 2008;28:375–81.

    PubMed  Google Scholar 

  45. Hassan AH, Al-Fraidi AA, Al-Saeed SH. Corticotomy-assisted orthodontic treatment: review. Open Dent J. 2010;4:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Priyanka MJ. Periodontally accelerated osteogenic orthodontics. Int J Pharm Pharm Sci. 2013;5:49–51.

    Google Scholar 

  47. Reichert C, Deschner J, Kasaj A, et al. Guided tissue regeneration and orthodontics. A review of the literature. J Orofac Orthop. 2009;70:6–19.

    Article  PubMed  Google Scholar 

  48. Yilmaz S, Kılıç AR, Kelesc A, et al. Reconstruction of an alveolar cleft for orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2000;117:156–63.

    Article  CAS  Google Scholar 

  49. Cardaropoli D, Re S, Manuzzi W, et al. Bio-Oss collagen and orthodontic movement for the treatment of infrabony defects in the esthetic zone. Int J Periodontics Restorative Dent. 2006;26:553–9.

    PubMed  Google Scholar 

  50. Okano T, Bae YH, Jacobs H, Kim SW. Thermally on-off switching polymers for drug permeation and release. J Control Release. 1990;11:571–6.

    Article  Google Scholar 

  51. Moioli EK, Clark PA, Sumner DR, et al. Autologous stem cell regeneration in craniosynostosis. Bone. 2008;42:332–40.

    Article  CAS  PubMed  Google Scholar 

  52. Mao JJ, Stosich MS, Moioli EK, et al. Facial reconstruction by biosurgery: cell transplantation versus cell homing. Tissue Eng Part B Rev. 2010;16:257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015;12:211–23.

    Article  Google Scholar 

  54. Costello BJ, Kail M. Alveolar/maxillary bone grafting. In: Laskin D, editor. Problem solving in oral and maxillofacial surgery. Hanover Park: W.B. Saunders; 2007. p. 144–5.

    Google Scholar 

  55. Costello BJ, Shah G, Kumta P, Sfeir CS. Regenerative medicine for craniomaxillofacial surgery. Oral Maxillofac Surg Clin N Am. 2010;22:33–42.

    Article  Google Scholar 

  56. Seeherman H, Li R, Wozney J. A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone JtSurg. 2003;85(Suppl. 3):96–108.

    Article  Google Scholar 

  57. Hannallah D, Peterson B, Lieberman JR. Gene therapy in orthopedic surgery. J Bone Joint Surg. 2002;84:1046–61.

    Article  Google Scholar 

  58. Lu CH, Chang YH, Lin SY, Li KC, Hu YC. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv. 2013;31:1695–706.

    Article  CAS  PubMed  Google Scholar 

  59. Kohn DH. Bioceramics. In: Kutz M, editor. Biomedical engineering and design handbook, vol. I. New York: McGraw-Hill; 2009.

    Google Scholar 

  60. Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials. 2013;6:3840–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater. 2010;1:22–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nandi SK, Roy S, Mukherjee P, et al. Orthopaedic applications of bone graft and graft substitutes: a review. Indian J Med Res. 2010;132:15–30.

    CAS  PubMed  Google Scholar 

  63. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin North Am. 1986;30:49–67.

    CAS  PubMed  Google Scholar 

  64. Meffert RM, Thomas JR, Hamilton KM, Brownstein CN. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects. J Periodontol. 1985;56:63–73.

    Article  CAS  PubMed  Google Scholar 

  65. Baldock WT, Hutchens LH Jr, WT MF Jr, Simpson DM. An evaluation of tricalcium phosphate implants in human periodontal osseous defects of two patients. J Periodontol. 1985;56:1–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  PubMed  Google Scholar 

  67. Stanley HR, Hall MB, Clark AE, et al. Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a five year evaluation. Int J Oral Maxillofac Implants. 1997;12:95–105.

    CAS  PubMed  Google Scholar 

  68. Froum SJ, Weinberg MA, Tarnow D. Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects—a clinical study. J Periodontol. 1998;69:698–709.

    Article  CAS  PubMed  Google Scholar 

  69. Hench LL. Bioceramics. J Am Ceram Soc. 1998;82:1705–28.

    Google Scholar 

  70. Kokubo T. A/W glass ceramics: processing and properties. In: Hench LL, Wilson J, editors. Introduction of bioceramics. Singapore: World Scientific; 1993. p. 75–88.

    Chapter  Google Scholar 

  71. Larsson S, Hannink G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury. 2011;42:S30–4.

    Article  PubMed  Google Scholar 

  72. Harris RJ. Clinical evaluation of a composite bone graft with a calcium sulfate barrier. J Periodontol. 2004;75:685–92.

    Article  CAS  PubMed  Google Scholar 

  73. Aichelmann-Reidy ME, Heath C, Reynolds MA. Clinical evaluation of calcium sulfate in combination with demineralized freeze-dried bone allograft for the treatment of human intraosseous defects. J Periodontol. 2004;75:340–7.

    Article  PubMed  Google Scholar 

  74. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(Suppl 4):D37–47.

    Article  Google Scholar 

  75. Larsson S, Bauer TW. Use of injectable calcium phosphate cement for fracture fixation: a review. Clin Orthop. 2002;395:23–8.

    Article  Google Scholar 

  76. Brown GD, Mealey BL, Nummikoski PV, et al. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J Periodontol. 1998;69:146–57.

    Article  CAS  PubMed  Google Scholar 

  77. Fernandez AC, Mohanty M, Varma HK, Komath M. Safety and efficacy of Chitra-CPC calcium phosphate cement. Curr Sci. 2006;91:1678–86.

    CAS  Google Scholar 

  78. Varma HK, Sivakumar R. Preparation and characterisation of free flowing hydroxyapatite powders. Phosphorous Res Bull. 1996;6:35–8.

    Article  CAS  Google Scholar 

  79. Rajesh KS, Mohanty M, Varma BRR, Bhat KM. Efficacy of Chitra granule and powder (hydroxyapatite) in alveolar bone regeneration in rabbits—a histological study. Ind J Dent Res. 1998;9:59–65.

    CAS  Google Scholar 

  80. Varma HK, Sivakumar R. A process for the preparation of β-tricalcium phosphate powder. Indian Patent No.181310; 1996.

    Google Scholar 

  81. Varma HK, Sureshbabu S. Oriented growth of surface grains in beta tricalcium phosphate. Mater Lett. 2001;49:83–5.

    Article  CAS  Google Scholar 

  82. Varma HK, Sureshbabu S. Preparation of a composite bioceramic material for biomedical applications. Indian Patent; 2000.

    Google Scholar 

  83. Sureshbabu S, Komath M, Varma HK. In situ formation of hydroxyapatite-alpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity. J Am Ceram Soc. 2012;95:915–24.

    CAS  Google Scholar 

  84. Venugopal B, Fernandez FB, Suresh Babu S, et al. Adipogenesis on biphasic calcium phosphate using rat adipose-derived mesenchymal stem cells: in vitro and in vivo. J Biomed Mater Res A. 2012;100:1427–37.

    Article  PubMed  Google Scholar 

  85. Fernandez FB, Shenoy SJ, Suresh Babu S, et al. Short-term studies using ceramic scaffolds in lapine model for osteochondral defect amelioration. Biomed Mater. 2012;7:035005.

    Article  CAS  PubMed  Google Scholar 

  86. Balakumar B, Babu S, Varma HK, Madhuri V. Triphasic ceramic scaffold in paediatric and adolescent bone defects. J Pediatr Orthop B. 2014;23:187–95.

    Article  PubMed  Google Scholar 

  87. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;1:176–9.

    Article  Google Scholar 

  88. Wong CT, Lu WW, Chan WK, et al. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. J Biomed Mater Res A. 2004;68:513–21.

    Article  CAS  PubMed  Google Scholar 

  89. Mohan BG, Suresh Babu S, Varma HK, John A. In vitro evaluation of bioactive strontium-based ceramic with rabbit adipose-derived stem cells for bone tissue regeneration. J Mater Sci Mater Med. 2013;24:2831–44.

    Article  CAS  PubMed  Google Scholar 

  90. Mohan BG, Shenoy SJ, Suresh Babu S, et al. Strontium calcium phosphate for the repair of leporine (Oryctolagus cuniculus) ulna segmental defect. J Biomed Mater Res A. 2013;101:261–71.

    Article  PubMed  Google Scholar 

  91. Chandran S, Suresh Babu S, Hari Krishnan VS, et al. Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model. J Biomater Appl. 2016;31(4):499–509. doi:10.1177/0885328216647197.

    Article  CAS  PubMed  Google Scholar 

  92. Krishnan V, Bhatia A, Varma HK. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration. Dent Mater. 2016;32:646–59. doi:10.1016/j.dental.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  93. Komath M, Varma HK. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull Mater Sci. 2003;26:415–22.

    Article  CAS  Google Scholar 

  94. Jacob GM, Kumar A, Varughese JM, et al. Periapical tissue reaction to calcium phosphate root canal sealer in porcine model. Indian J Dent Res. 2014;25:22–7.

    Article  PubMed  Google Scholar 

  95. Rajesh JB, Nandakumar K, Varma HK, et al. Calcium phosphate cement as a “barrier-graft” for the treatment of human periodontal intraosseous defects. Indian J Dent Res. 2009;20:471–9.

    Article  CAS  PubMed  Google Scholar 

  96. Sandhya S, Suresh Babu S, Nishad KV, et al. Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate. J Mater Sci Mater Med. 2015;26:5355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bhuvaneshwar M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Komath, M. et al. (2017). Designing Bioactive Scaffolds for Dental Tissue Engineering. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_25

Download citation

Publish with us

Policies and ethics